-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathstyle_frames.py
211 lines (179 loc) · 9.91 KB
/
style_frames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Brycen Westgarth and Tristan Jogminas
# March 5, 2021
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow_hub as hub
import numpy as np
import tensorflow as tf
import glob
import cv2
import logging
from config import Config
class StyleFrame:
MAX_CHANNEL_INTENSITY = 255.0
def __init__(self, conf=Config):
self.conf = conf
os.environ['TFHUB_CACHE_DIR'] = self.conf.TENSORFLOW_CACHE_DIRECTORY
self.hub_module = hub.load(self.conf.TENSORFLOW_HUB_HANDLE)
self.input_frame_directory = glob.glob(f'{self.conf.INPUT_FRAME_DIRECTORY}/*')
self.output_frame_directory = glob.glob(f'{self.conf.OUTPUT_FRAME_DIRECTORY}/*')
self.style_directory = glob.glob(f'{self.conf.STYLE_REF_DIRECTORY}/*')
self.ref_count = len(self.conf.STYLE_SEQUENCE)
files_to_be_cleared = self.output_frame_directory
if self.conf.CLEAR_INPUT_FRAME_CACHE:
files_to_be_cleared += self.input_frame_directory
for file in files_to_be_cleared:
os.remove(file)
# Update contents of directory after deletion
self.input_frame_directory = glob.glob(f'{self.conf.INPUT_FRAME_DIRECTORY}/*')
self.output_frame_directory = glob.glob(f'{self.conf.OUTPUT_FRAME_DIRECTORY}/*')
if len(self.input_frame_directory):
# Retrieve an image in the input frame dir to get the width
self.frame_width = cv2.imread(self.input_frame_directory[0]).shape[1]
def get_input_frames(self):
if len(self.input_frame_directory):
print("Using cached input frames")
return
vid_obj = cv2.VideoCapture(self.conf.INPUT_VIDEO_PATH)
frame_interval = np.floor((1.0 / self.conf.INPUT_FPS) * 1000)
success, image = vid_obj.read()
if image is None:
raise ValueError(f"ERROR: Please provide missing video: {self.conf.INPUT_VIDEO_PATH}")
scale_constant = (self.conf.FRAME_HEIGHT / image.shape[0])
self.frame_width = int(image.shape[1] * scale_constant)
image = cv2.resize(image, (self.frame_width, self.conf.FRAME_HEIGHT))
cv2.imwrite(self.conf.INPUT_FRAME_PATH.format(0), image.astype(np.uint8))
count = 1
while success:
msec_timestamp = count * frame_interval
vid_obj.set(cv2.CAP_PROP_POS_MSEC, msec_timestamp)
success, image = vid_obj.read()
if not success:
break
image = cv2.resize(image, (self.frame_width, self.conf.FRAME_HEIGHT))
cv2.imwrite(self.conf.INPUT_FRAME_PATH.format(count), image.astype(np.uint8))
count += 1
self.input_frame_directory = glob.glob(f'{self.conf.INPUT_FRAME_DIRECTORY}/*')
def get_style_info(self):
frame_length = len(self.input_frame_directory)
style_refs = list()
resized_ref = False
style_files = sorted(self.style_directory)
self.t_const = frame_length if self.ref_count == 1 else np.ceil(frame_length / (self.ref_count - 1))
# Open first style ref and force all other style refs to match size
first_style_ref = cv2.imread(style_files.pop(0))
first_style_ref = cv2.cvtColor(first_style_ref, cv2.COLOR_BGR2RGB)
first_style_height, first_style_width, _rgb = first_style_ref.shape
style_refs.append(first_style_ref / self.MAX_CHANNEL_INTENSITY)
for filename in style_files:
style_ref = cv2.imread(filename)
style_ref = cv2.cvtColor(style_ref, cv2.COLOR_BGR2RGB)
style_ref_height, style_ref_width, _rgb = style_ref.shape
# Resize all style_ref images to match first style_ref dimensions
if style_ref_width != first_style_width or style_ref_height != first_style_height:
resized_ref = True
style_ref = cv2.resize(style_ref, (first_style_width, first_style_height))
style_refs.append(style_ref / self.MAX_CHANNEL_INTENSITY)
if resized_ref:
print("WARNING: Resizing style images which may cause distortion. To avoid this, please provide style images with the same dimensions")
self.transition_style_seq = list()
for i in range(self.ref_count):
if self.conf.STYLE_SEQUENCE[i] is None:
self.transition_style_seq.append(None)
else:
self.transition_style_seq.append(style_refs[self.conf.STYLE_SEQUENCE[i]])
def _trim_img(self, img):
return img[:self.conf.FRAME_HEIGHT, :self.frame_width]
def get_output_frames(self):
self.input_frame_directory = glob.glob(f'{self.conf.INPUT_FRAME_DIRECTORY}/*')
ghost_frame = None
for count, filename in enumerate(sorted(self.input_frame_directory)):
if count % 10 == 0:
print(f"Output frame: {(count/len(self.input_frame_directory)):.0%}")
content_img = cv2.imread(filename)
content_img = cv2.cvtColor(content_img, cv2.COLOR_BGR2RGB) / self.MAX_CHANNEL_INTENSITY
curr_style_img_index = int(count / self.t_const)
mix_ratio = 1 - ((count % self.t_const) / self.t_const)
inv_mix_ratio = 1 - mix_ratio
prev_image = self.transition_style_seq[curr_style_img_index]
next_image = self.transition_style_seq[curr_style_img_index + 1]
prev_is_content_img = False
next_is_content_img = False
if prev_image is None:
prev_image = content_img
prev_is_content_img = True
if next_image is None:
next_image = content_img
next_is_content_img = True
# If both, don't need to apply style transfer
if prev_is_content_img and next_is_content_img:
temp_ghost_frame = cv2.cvtColor(ghost_frame, cv2.COLOR_RGB2BGR) * self.MAX_CHANNEL_INTENSITY
cv2.imwrite(self.conf.OUTPUT_FRAME_PATH.format(count), temp_ghost_frame)
continue
if count > 0:
content_img = ((1 - self.conf.GHOST_FRAME_TRANSPARENCY) * content_img) + (self.conf.GHOST_FRAME_TRANSPARENCY * ghost_frame)
content_img = tf.cast(tf.convert_to_tensor(content_img), tf.float32)
if prev_is_content_img:
blended_img = next_image
elif next_is_content_img:
blended_img = prev_image
else:
prev_style = mix_ratio * prev_image
next_style = inv_mix_ratio * next_image
blended_img = prev_style + next_style
blended_img = tf.cast(tf.convert_to_tensor(blended_img), tf.float32)
expanded_blended_img = tf.constant(tf.expand_dims(blended_img, axis=0))
expanded_content_img = tf.constant(tf.expand_dims(content_img, axis=0))
# Apply style transfer
stylized_img = self.hub_module(expanded_content_img, expanded_blended_img).pop()
stylized_img = tf.squeeze(stylized_img)
# Re-blend
if prev_is_content_img:
prev_style = mix_ratio * content_img
next_style = inv_mix_ratio * stylized_img
if next_is_content_img:
prev_style = mix_ratio * stylized_img
next_style = inv_mix_ratio * content_img
if prev_is_content_img or next_is_content_img:
stylized_img = self._trim_img(prev_style) + self._trim_img(next_style)
if self.conf.PRESERVE_COLORS:
stylized_img = self._color_correct_to_input(content_img, stylized_img)
ghost_frame = np.asarray(self._trim_img(stylized_img))
temp_ghost_frame = cv2.cvtColor(ghost_frame, cv2.COLOR_RGB2BGR) * self.MAX_CHANNEL_INTENSITY
cv2.imwrite(self.conf.OUTPUT_FRAME_PATH.format(count), temp_ghost_frame)
self.output_frame_directory = glob.glob(f'{self.conf.OUTPUT_FRAME_DIRECTORY}/*')
def _color_correct_to_input(self, content, generated):
# image manipulations for compatibility with opencv
content = np.array((content * self.MAX_CHANNEL_INTENSITY), dtype=np.float32)
content = cv2.cvtColor(content, cv2.COLOR_BGR2YCR_CB)
generated = np.array((generated * self.MAX_CHANNEL_INTENSITY), dtype=np.float32)
generated = cv2.cvtColor(generated, cv2.COLOR_BGR2YCR_CB)
generated = self._trim_img(generated)
# extract channels, merge intensity and color spaces
color_corrected = np.zeros(generated.shape, dtype=np.float32)
color_corrected[:, :, 0] = generated[:, :, 0]
color_corrected[:, :, 1] = content[:, :, 1]
color_corrected[:, :, 2] = content[:, :, 2]
return cv2.cvtColor(color_corrected, cv2.COLOR_YCrCb2BGR) / self.MAX_CHANNEL_INTENSITY
def create_video(self):
self.output_frame_directory = glob.glob(f'{self.conf.OUTPUT_FRAME_DIRECTORY}/*')
fourcc = cv2.VideoWriter_fourcc(*'MP4V')
video_writer = cv2.VideoWriter(self.conf.OUTPUT_VIDEO_PATH, fourcc, self.conf.OUTPUT_FPS, (self.frame_width, self.conf.FRAME_HEIGHT))
for count, filename in enumerate(sorted(self.output_frame_directory)):
if count % 10 == 0:
print(f"Saving frame: {(count/len(self.output_frame_directory)):.0%}")
image = cv2.imread(filename)
video_writer.write(image)
video_writer.release()
print(f"Style transfer complete! Output at {self.conf.OUTPUT_VIDEO_PATH}")
def run(self):
print("Getting input frames")
self.get_input_frames()
print("Getting style info")
self.get_style_info()
print("Getting output frames")
self.get_output_frames()
print("Saving video")
self.create_video()
if __name__ == "__main__":
StyleFrame().run()