-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
215 lines (176 loc) · 8.01 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import argparse
import os
import torch
from torch.utils import data
from dataset import MMFace4D, Vox256, Taichi, TED
import torchvision
import torchvision.transforms as transforms
from trainer import Trainer
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
import torch.multiprocessing as mp
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def data_sampler(dataset, shuffle):
if shuffle:
return data.RandomSampler(dataset)
else:
return data.SequentialSampler(dataset)
def sample_data(loader):
while True:
for batch in loader:
yield batch
def display_img(idx, img, name, writer):
img = img.clamp(-1, 1)
img = ((img - img.min()) / (img.max() - img.min())).data
writer.add_images(tag='%s' % (name), global_step=idx, img_tensor=img[:, :3, :, :])
if img.shape[1] > 3:
img_depth = img[:, 3, :, :]
img_depth = img_depth.unsqueeze(1).repeat((1, 3, 1, 1))
writer.add_images(tag='%s' % (name+'_depth'), global_step=idx, img_tensor=img_depth)
def write_loss(i, losses, writer):
if 'vgg_loss' in losses:
writer.add_scalar('vgg_loss', losses['vgg_loss'].item(), i)
if 'l1_loss' in losses:
writer.add_scalar('l1_loss', losses['l1_loss'].item(), i)
if 'gradient_loss' in losses:
writer.add_scalar('gradient_loss', losses['gradient_loss'].item(), i)
if 'smooth_loss' in losses:
writer.add_scalar('smooth_loss', losses['smooth_loss'].item(), i)
if 'structure_preserve_loss' in losses:
writer.add_scalar('structure_preserve_loss', losses['structure_preserve_loss'].item(), i)
writer.flush()
def ddp_setup(args, rank, world_size):
os.environ['MASTER_ADDR'] = args.addr
os.environ['MASTER_PORT'] = args.port
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def main(rank, world_size, args):
# init distributed computing
ddp_setup(args, rank, world_size)
torch.cuda.set_device(rank)
device = torch.device("cuda")
# make logging folder
log_path = os.path.join(args.exp_path, args.exp_name + '/log')
checkpoint_path = os.path.join(args.exp_path, args.exp_name + '/checkpoint')
os.makedirs(log_path, exist_ok=True)
os.makedirs(checkpoint_path, exist_ok=True)
writer = SummaryWriter(log_path)
print('==> preparing dataset')
transform = torchvision.transforms.Compose([
transforms.Resize((args.size, args.size)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]
)
if args.dataset == 'ted':
dataset = TED('train', transform, True)
dataset_test = TED('test', transform)
elif args.dataset == 'vox':
dataset = Vox256('train', transform, False)
dataset_test = Vox256('test', transform)
elif args.dataset == 'taichi':
dataset = Taichi('train', transform, True)
dataset_test = Taichi('test', transform)
elif args.dataset == 'MMFace4D':
dataset = MMFace4D('train', augmentation=False, in_channels=args.in_channels)
dataset_test = MMFace4D('test', in_channels=args.in_channels)
elif args.dataset == 'raw':
dataset = MMFace4D('raw', augmentation=False, in_channels=args.in_channels)
dataset_test = MMFace4D('test', in_channels=args.in_channels)
else:
raise NotImplementedError
loader = data.DataLoader(
dataset,
num_workers=8,
batch_size=args.batch_size // world_size,
sampler=data.distributed.DistributedSampler(dataset, num_replicas=world_size, rank=rank, shuffle=True),
pin_memory=True,
drop_last=False,
)
loader_test = data.DataLoader(
dataset_test,
num_workers=8,
batch_size=4,
sampler=data.distributed.DistributedSampler(dataset_test, num_replicas=world_size, rank=rank, shuffle=False),
pin_memory=True,
drop_last=False,
)
loader = sample_data(loader)
loader_test = sample_data(loader_test)
print('==> initializing trainer')
# Trainer
trainer = Trainer(args, device, rank)
# resume
if args.resume_ckpt is not None:
args.start_iter = trainer.resume(args.resume_ckpt)
print('==> resume from iteration %d' % (args.start_iter))
print('==> training')
pbar = range(args.iter-args.start_iter)
for idx in pbar:
i = idx + args.start_iter
# laoding data
img_source, img_target = next(loader)
img_source = img_source.to(rank, non_blocking=True)
img_target = img_target.to(rank, non_blocking=True)
# update generator
losses, img_recon = trainer.gen_update(img_source, img_target, distilling=args.distilling)
if rank == 0:
# write to log
write_loss(idx, losses, writer)
# display
if i % args.display_freq == 0 and rank == 0:
loss_values = {key: val.detach().item() for key, val in losses.items()}
print("[Iter %d/%d]"%(i, args.iter) + str(loss_values))
if rank == 0:
img_test_source, img_test_target = next(loader_test)
img_test_source = img_test_source.to(rank, non_blocking=True)
img_test_target = img_test_target.to(rank, non_blocking=True)
img_recon, img_source_ref = trainer.sample(img_test_source, img_test_target, distilling=args.distilling)
display_img(i, img_test_source, 'source', writer)
display_img(i, img_test_target, 'target', writer)
if isinstance(img_recon, dict):
display_img(i, img_recon['out_warp'], 'recon_warp', writer)
display_img(i, img_recon['out_inpaint'], 'recon_inpaint', writer)
else:
display_img(i, img_recon, 'recon', writer)
display_img(i, img_source_ref, 'source_ref', writer)
writer.flush()
print("==> Display finished")
# save model
if i % args.save_freq == 0 and rank == 0:
trainer.save(i, checkpoint_path)
print("==> Model saved")
return
if __name__ == "__main__":
# training params
parser = argparse.ArgumentParser()
parser.add_argument("--iter", type=int, default=800000)
parser.add_argument("--size", type=int, default=256)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--in_channels", type=int, default=4)
parser.add_argument("--lambda_loss_l1", type=float, default=200.0)
parser.add_argument("--lambda_loss_sm", type=float, default=200.0)
parser.add_argument("--lambda_loss_gr", type=float, default=100.0)
parser.add_argument("--lambda_loss_sp", type=float, default=50.0)
parser.add_argument("--g_reg_every", type=int, default=4)
parser.add_argument("--resume_ckpt", type=str, default=None)
parser.add_argument("--lr", type=float, default=0.0002)
parser.add_argument("--channel_multiplier", type=int, default=1)
parser.add_argument("--start_iter", type=int, default=0)
parser.add_argument("--lr_freq", type=int, default=5000)
parser.add_argument("--display_freq", type=int, default=2000)
parser.add_argument("--save_freq", type=int, default=1000)
parser.add_argument("--latent_dim_style", type=int, default=512)
parser.add_argument("--latent_dim_motion", type=int, default=20)
parser.add_argument("--latent_dim_depth_motion", type=int, default=5)
parser.add_argument("--dataset", type=str, default='MMFace4D')
parser.add_argument("--exp_path", type=str, default='./saved_models/')
parser.add_argument("--exp_name", type=str, default='v1')
parser.add_argument("--addr", type=str, default='localhost')
parser.add_argument("--port", type=str, default='12345')
parser.add_argument("--distilling", action='store_true', default=False)
opts = parser.parse_args()
n_gpus = torch.cuda.device_count()
assert n_gpus >= 2
world_size = n_gpus
print('==> training on %d gpus' % n_gpus)
mp.spawn(main, args=(world_size, opts,), nprocs=world_size, join=True)