-
Notifications
You must be signed in to change notification settings - Fork 0
/
reward_modeling.py
121 lines (104 loc) · 4.14 KB
/
reward_modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
python reward_modeling.py \
--model_name_or_path=distilbert/distilbert-base-uncased\
--output_dir="reward_modeling_anthropic_hh" \
--per_device_train_batch_size=64 \
--num_train_epochs=1 \
--gradient_checkpointing=True \
--learning_rate=1.41e-5 \
--report_to="wandb" \
--remove_unused_columns=False \
--optim="adamw_torch" \
--logging_steps=10 \
--evaluation_strategy="steps" \
--max_length=512
"""
import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser
from trl import ModelConfig, RewardConfig, RewardTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
from utils import print_config
# Ensure progress bars are handled correctly in environments like Jupyter Notebooks
tqdm.pandas()
# Parse command line arguments into dataclasses for easy access
parser = HfArgumentParser((RewardConfig, ModelConfig))
reward_config, model_config = parser.parse_args_into_dataclasses()
reward_config.gradient_checkpointing_kwargs = dict(use_reentrant=False)
# Print configurations
print_config(reward_config, "Reward Configuration")
print_config(model_config, "Model Configuration")
#-------- Model & Tokenizer --------#
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, use_fast=True)
model = AutoModelForSequenceClassification.from_pretrained(
model_config.model_name_or_path, num_labels=1, **model_kwargs
)
#-------- Dataset --------#
raw_datasets = load_dataset("Anthropic/hh-rlhf")
# Tokenize chosen/rejected pairs of inputs
def preprocess_function(examples):
new_examples = {
"input_ids_chosen": [],
"attention_mask_chosen": [],
"input_ids_rejected": [],
"attention_mask_rejected": [],
}
for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
tokenized_chosen = tokenizer(chosen)
tokenized_rejected = tokenizer(rejected)
new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])
return new_examples
# Preprocess the dataset and filter out examples that are longer than args.max_length
train_dataset = raw_datasets["train"]
# Reduce the size of the dataset to 10%
small_train_dataset = train_dataset.shuffle(seed=42).select(
range(int(1 * len(train_dataset)))
)
# Preprocess the training dataset
small_train_dataset = small_train_dataset.map(
preprocess_function,
batched=True,
num_proc=4,
)
# Filter out examples that are longer than reward_config.max_length for the training dataset
small_train_dataset = small_train_dataset.filter(
lambda x: len(x["input_ids_chosen"]) <= reward_config.max_length
and len(x["input_ids_rejected"]) <= reward_config.max_length
)
# Similarly, preprocess the validation dataset
eval_dataset = raw_datasets["test"].map(
preprocess_function,
batched=True,
num_proc=4,
)
# Filter out examples that are longer than reward_config.max_length for the validation dataset
eval_dataset = eval_dataset.filter(
lambda x: len(x["input_ids_chosen"]) <= reward_config.max_length
and len(x["input_ids_rejected"]) <= reward_config.max_length
)
#-------- Training --------#
trainer = RewardTrainer(
model=model,
tokenizer=tokenizer,
args=reward_config,
train_dataset=small_train_dataset,
eval_dataset=eval_dataset,
peft_config=get_peft_config(model_config),
)
trainer.train()
trainer.save_model(reward_config.output_dir)