-
Notifications
You must be signed in to change notification settings - Fork 0
/
housingstress_sa2_30_40.Rmd
226 lines (179 loc) · 6.68 KB
/
housingstress_sa2_30_40.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
title: "Housing Stress - SA2s in Greater Melbourne"
output:
html_document:
df_print: paged
---
# Introduction
Calculating housing stress using 30/40 as in here: https://www.ahuri.edu.au/policy/ahuri-briefs/2016/3040-indicator
2016 Census - Counting Dwellings, Place of Enumeration (SA2)
Data Source: Census of Population and Housing, 2016, TableBuilder
Counting: Dwellings Location on Census Night
Variables:
* HIED Equivalised Total Household Income (weekly)
* RNTRD Rent (weekly) Ranges
* MRERD Mortgage Repayments (monthly) Ranges
```{r, warning=FALSE, message = FALSE}
library(tidyverse)
library(readxl)
library(sf)
library(tmap)
library(janitor)
library(scales)
```
## Importing the raw data
```{r}
##original files - 2016 census data - csv string - zeros suppressed
rentdata <- read_excel("sa2_data.xlsx", sheet = "sa2_hied_rntrd_2gmel_ zeros_sup", range = "A11:F49106") %>%
filter(GCCSA == "Greater Melbourne")
mortdata <- read_excel("sa2_data.xlsx", sheet = "sa2_hied_mrerd_2gmel_ zeros_sup", range = "A11:F59708") %>%
filter(GCCSA == "Greater Melbourne")
```
## Transforming the rent data
```{r}
rent <- rentdata %>%
rename(sa2 = SA2,
hhincwk = `HIED Equivalised Total Household Income (weekly)`,
rentwk = `RNTRD Rent (weekly) Ranges`) %>%
mutate(hhincwk = as_factor(hhincwk), rentwk = as_factor(rentwk)) %>%
rename(hh = Count) %>%
select(-Counting)
rent
rent_dw <- rent %>%
filter(hhincwk != 'Not applicable',
rentwk != 'Not applicable') %>%
group_by(sa2) %>%
summarise(dw = sum(hh))
rent_dw #improve this by just getting the dwelling data from the datapacks and joining them on at the end -G32
rent_hh <- rent %>%
filter(!hhincwk %in% c('Nil income', 'Partial income stated', 'All incomes not stated', 'Not applicable'),
!rentwk %in% c('Not stated', 'Not applicable' ))
rent_hh
```
## Transforming the mortgage data
```{r}
mort <- mortdata %>%
rename(sa2 = SA2,
hhincwk = `HIED Equivalised Total Household Income (weekly)`,
mortmth = `MRERD Mortgage Repayments (monthly) Ranges`) %>%
mutate(hhincwk = as_factor(hhincwk), mortmth = as_factor(mortmth)) %>%
rename(hh = Count) %>%
select(-Counting)
mort
mort_dw <- mort %>%
filter(hhincwk != 'Not applicable',
mortmth != 'Not applicable') %>%
group_by(sa2) %>%
summarise(dw = sum(hh))
mort_dw #as noted above
mort_hh <- mort %>%
filter(!hhincwk %in% c('Nil income', 'Partial income stated', 'All incomes not stated', 'Not applicable'),
!mortmth %in% c('Not stated', 'Not applicable'))
mort_hh
```
## Midpoints for income
```{r}
hhincwk_mid <- rentdata %>%
rename(sa2 = SA2,
hhincwk = `HIED Equivalised Total Household Income (weekly)`) %>%
mutate(hhincwk = as_factor(hhincwk)) %>%
distinct(hhincwk) %>%
filter(!hhincwk %in% c('Nil income', 'Partial income stated', 'All incomes not stated', 'Not applicable', 'Total')) %>%
mutate(inc_low = c(1, 150, 300, 400, 500, 650, 800, 1000, 1250, 1500, 1750, 2000, 2500, 3000),
inc_high = c(149, 299, 399, 499, 649, 799, 999, 1249, 1499, 1749, 1999, 2499, 2999, 3499),
inc_mid = (inc_low+inc_high)/2) %>%
select(hhincwk, inc_mid)
hhincwk_mid
```
Filter to include only bottom 40 per cent of households by income
Equivalised disposable household income - P40 = $714 in 2015-16 for VIC - http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/6523.02015-16?OpenDocument
```{r}
hhincwk_mid40 <- hhincwk_mid %>%
filter(inc_mid <= 714)
hhincwk_mid40
```
## Midpoints for rent and mortgages
```{r}
rentwk_mid <- rentdata %>%
rename(rentwk = `RNTRD Rent (weekly) Ranges`) %>%
distinct(rentwk) %>%
mutate(rentwk = as_factor(rentwk)) %>%
filter(!rentwk %in% c('Not stated', 'Not applicable', 'Total' )) %>%
mutate(rent_low = c(0, 1, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 550, 650, 750, 850, 950),
rent_high = c(0, 74, 99, 124, 149, 174, 199, 224, 249, 274, 299, 324, 349, 374, 399, 424, 449, 549, 649, 749, 849, 949, 1050),rent_mid = (rent_low + rent_high)/2) %>%
select(rentwk, rent_mid)
rentwk_mid
mortwk_mid <- mortdata %>%
rename(mortmth = `MRERD Mortgage Repayments (monthly) Ranges`) %>%
distinct(mortmth) %>%
mutate(mortmth = as_factor(mortmth)) %>%
filter(!mortmth %in% c('Not stated', 'Not applicable')) %>%
mutate(mort_low = c(0, 1, 150, 300, 450, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 3000, 4000, 5000),
mortwk_low = mort_low/4,
mort_high = c(0, 149, 299, 449, 599, 799, 999, 1199, 1399, 1599, 1799, 1999, 2199, 2399, 2599, 2999, 3999, 4999, 5999),
mortwk_high = mort_high/4,
mort_mid = (mort_low + mort_high)/2,
mortwk_mid = (mortwk_low + mortwk_high)/2) %>%
select(mortmth, mort_mid, mortwk_mid)
mortwk_mid
```
## Joining
```{r}
#joining the data ####
rent_join <- left_join(hhincwk_mid40, rent_hh)
rent_join <- left_join(rent_join, rentwk_mid)
rent_join
mort_join <- left_join(hhincwk_mid40, mort_hh)
mort_join <- left_join(mort_join, mortwk_mid)
mort_join
```
## Stress
```{r}
rentalstress <- rent_join %>%
mutate(prophousing = rent_mid/inc_mid,
hstress = ifelse(prophousing <= 0.3, 0, hh)) %>%
group_by(sa2) %>%
summarise(lowinc_hh = sum(hh), hstress = sum(hstress))
rentalstress <- left_join(rentalstress, rent_dw, by = "sa2") %>%
select(sa2, dw, lowinc_hh, hstress) %>%
mutate(propstress = hstress/dw)
rentalstress
mortgagestress <- mort_join %>%
mutate(prophousing = mortwk_mid/inc_mid,
hstress = ifelse(prophousing <= 0.3, 0, hh)) %>%
group_by(sa2) %>%
summarise(lowinc_hh = sum(hh), hstress = sum(hstress))
mortgagestress <- left_join(mortgagestress, mort_dw, by = "sa2") %>%
select(sa2, dw, lowinc_hh, hstress) %>%
mutate(propstress = hstress/dw)
mortgagestress
housingstress_join <- full_join(rentalstress, mortgagestress)
housingstress_sa2 <- housingstress_join %>%
group_by(sa2) %>%
summarise(dw = sum(dw), lowinc_hh = sum(lowinc_hh), hstress = sum(hstress)) %>%
mutate(prop_stress = hstress/dw) %>%
filter(!is.na(prop_stress))
housingstress_sa2
write_csv(housingstress_sa2, "tables_out/housingstress_sa2.csv")
```
## What does it look like?
Most of the SA2s have fewer than 30 per cent of households in housing stress.
```{r}
ggplot(housingstress_sa2, aes(x = prop_stress)) +
geom_histogram(bins = 50)
```
## The shapefile
```{r}
gm_shp <- st_read("shp/SA2_2016_GMEL.shp") %>%
clean_names() %>%
select(sa2_name16) %>%
left_join(housingstress_sa2, by = c("sa2_name16" = "sa2")) %>%
mutate(prop_stress = round(prop_stress, 2))
```
## The map
Concentrations in the growth areas.
```{r}
tmap_mode("view")
tm_shape(gm_shp) +
tm_polygons("prop_stress")
```