Use vctrs package for bind rows #123
Replies: 5 comments 4 replies
-
As much as I would like to speed up aggregation in result <- crew:::monad_tibble(crew::crew_eval(12))
list <- replicate(1e6, result, simplify = FALSE)
system.time(data.table::rbindlist(list))
#> user system elapsed
#> 1.130 0.026 1.156
system.time(vctrs::vec_rbind(list, .name_repair = "universal_quiet"))
#> user system elapsed
#> 1.244 0.048 1.292 Created on 2023-09-18 with reprex v2.0.2 Session infosessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.3.0 (2023-04-21)
#> os macOS Ventura 13.5.2
#> system aarch64, darwin20
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Indiana/Indianapolis
#> date 2023-09-18
#> pandoc 3.1.2 @ /usr/local/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> cli 3.6.1 2023-03-23 [1] CRAN (R 4.3.0)
#> crew 0.4.1 2023-09-15 [1] local
#> data.table 1.14.8 2023-02-17 [1] CRAN (R 4.3.0)
#> digest 0.6.33 2023-07-07 [1] CRAN (R 4.3.0)
#> evaluate 0.21 2023-05-05 [1] CRAN (R 4.3.0)
#> fansi 1.0.4 2023-01-22 [1] CRAN (R 4.3.0)
#> fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.3.0)
#> fs 1.6.3 2023-07-20 [1] CRAN (R 4.3.0)
#> getip 0.1-3 2023-01-25 [1] CRAN (R 4.3.0)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.3.0)
#> htmltools 0.5.6 2023-08-10 [1] CRAN (R 4.3.0)
#> knitr 1.43 2023-05-25 [1] CRAN (R 4.3.0)
#> lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.3.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.3.0)
#> mirai 0.10.0 2023-09-16 [1] CRAN (R 4.3.1)
#> nanonext 0.10.0 2023-08-31 [1] CRAN (R 4.3.0)
#> pillar 1.9.0 2023-03-22 [1] CRAN (R 4.3.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.3.0)
#> processx 3.8.2 2023-06-30 [1] CRAN (R 4.3.0)
#> ps 1.7.5 2023-04-18 [1] CRAN (R 4.3.0)
#> purrr 1.0.2 2023-08-10 [1] CRAN (R 4.3.0)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.3.0)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.3.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.3.0)
#> R.utils 2.12.2 2022-11-11 [1] CRAN (R 4.3.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.3.0)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.3.0)
#> rlang 1.1.1 2023-04-28 [1] CRAN (R 4.3.0)
#> rmarkdown 2.24 2023-08-14 [1] CRAN (R 4.3.0)
#> rstudioapi 0.15.0 2023-07-07 [1] CRAN (R 4.3.0)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.3.0)
#> styler 1.10.2 2023-08-29 [1] CRAN (R 4.3.0)
#> tibble 3.2.1 2023-03-20 [1] CRAN (R 4.3.0)
#> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.3.0)
#> utf8 1.2.3 2023-01-31 [1] CRAN (R 4.3.0)
#> vctrs 0.6.3 2023-06-14 [1] CRAN (R 4.3.0)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.3.0)
#> xfun 0.40 2023-08-09 [1] CRAN (R 4.3.0)
#> yaml 2.3.7 2023-01-23 [1] CRAN (R 4.3.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
#>
#> ────────────────────────────────────────────────────────────────────────────── |
Beta Was this translation helpful? Give feedback.
-
I can even shave off a bit more time in result <- crew:::monad_tibble(crew::crew_eval(12))
list <- replicate(1e6, result, simplify = FALSE)
system.time(data.table::rbindlist(list, use.names = TRUE))
#> user system elapsed
#> 1.154 0.028 1.183
system.time(data.table::rbindlist(list, use.names = FALSE))
#> user system elapsed
#> 0.924 0.014 0.940
system.time(vctrs::vec_rbind(list, .name_repair = "universal_quiet"))
#> user system elapsed
#> 1.338 0.061 1.400 Created on 2023-09-18 with reprex v2.0.2 Session infosessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.3.0 (2023-04-21)
#> os macOS Ventura 13.5.2
#> system aarch64, darwin20
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz America/Indiana/Indianapolis
#> date 2023-09-18
#> pandoc 3.1.2 @ /usr/local/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> cli 3.6.1 2023-03-23 [1] CRAN (R 4.3.0)
#> crew 0.4.1 2023-09-15 [1] local
#> data.table 1.14.8 2023-02-17 [1] CRAN (R 4.3.0)
#> digest 0.6.33 2023-07-07 [1] CRAN (R 4.3.0)
#> evaluate 0.21 2023-05-05 [1] CRAN (R 4.3.0)
#> fansi 1.0.4 2023-01-22 [1] CRAN (R 4.3.0)
#> fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.3.0)
#> fs 1.6.3 2023-07-20 [1] CRAN (R 4.3.0)
#> getip 0.1-3 2023-01-25 [1] CRAN (R 4.3.0)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.3.0)
#> htmltools 0.5.6 2023-08-10 [1] CRAN (R 4.3.0)
#> knitr 1.43 2023-05-25 [1] CRAN (R 4.3.0)
#> lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.3.0)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.3.0)
#> mirai 0.10.0 2023-09-16 [1] CRAN (R 4.3.1)
#> nanonext 0.10.0 2023-08-31 [1] CRAN (R 4.3.0)
#> pillar 1.9.0 2023-03-22 [1] CRAN (R 4.3.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.3.0)
#> processx 3.8.2 2023-06-30 [1] CRAN (R 4.3.0)
#> ps 1.7.5 2023-04-18 [1] CRAN (R 4.3.0)
#> purrr 1.0.2 2023-08-10 [1] CRAN (R 4.3.0)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.3.0)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.3.0)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.3.0)
#> R.utils 2.12.2 2022-11-11 [1] CRAN (R 4.3.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.3.0)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.3.0)
#> rlang 1.1.1 2023-04-28 [1] CRAN (R 4.3.0)
#> rmarkdown 2.24 2023-08-14 [1] CRAN (R 4.3.0)
#> rstudioapi 0.15.0 2023-07-07 [1] CRAN (R 4.3.0)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.3.0)
#> styler 1.10.2 2023-08-29 [1] CRAN (R 4.3.0)
#> tibble 3.2.1 2023-03-20 [1] CRAN (R 4.3.0)
#> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.3.0)
#> utf8 1.2.3 2023-01-31 [1] CRAN (R 4.3.0)
#> vctrs 0.6.3 2023-06-14 [1] CRAN (R 4.3.0)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.3.0)
#> xfun 0.40 2023-08-09 [1] CRAN (R 4.3.0)
#> yaml 2.3.7 2023-01-23 [1] CRAN (R 4.3.0)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
#>
#> ────────────────────────────────────────────────────────────────────────────── |
Beta Was this translation helpful? Give feedback.
-
I think the difference is that I tested using a However, even using your above test, these are my results for a size of 1e5 for the list. > microbenchmark(data.table::rbindlist(list, use.names = FALSE), vctrs::vec_rbind(list, .name_repair = "universal_quiet"))
Unit: milliseconds
expr min lq mean median uq max
data.table::rbindlist(list, use.names = FALSE) 97.81084 98.56401 99.50163 99.18741 99.87714 114.37894
vctrs::vec_rbind(list, .name_repair = "universal_quiet") 79.48315 80.53932 82.23909 81.00991 81.52945 98.07469
neval
100
100 |
Beta Was this translation helpful? Give feedback.
-
Investigating a bit more, it does seem that Just FYI: |
Beta Was this translation helpful? Give feedback.
-
Thanks for digging into this more, and thanks for the original suggestion. I am not sure exactly how the lightness of |
Beta Was this translation helpful? Give feedback.
-
Prework
Description
vctrs::vec_rbind()
offers 2-3x speed up vsdata.table::rbindlist()
. Safe given your format is fixed for monad_tibble in the first place.Will post a PR.
Beta Was this translation helpful? Give feedback.
All reactions