-
Notifications
You must be signed in to change notification settings - Fork 0
/
math2101-hw2-rjw.tex
529 lines (514 loc) · 20 KB
/
math2101-hw2-rjw.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
\documentclass{letter}
\usepackage{enumitem}
\usepackage{mathtools}
\usepackage{fancyhdr}
\usepackage{xcolor}
\usepackage{mdframed}
\usepackage{bm}
\usepackage[letterpaper,portrait,left=2cm,right=2cm,top=3.5cm,bottom=2cm]{geometry}
\pagestyle{fancy}
\fancyhf{}
\rhead{Robert Wagner\\June 7, 2016}
\lhead{Math 2101\\Assignment 2}
\newcounter{question}
\setcounter{question}{0}
\usepackage{amsmath,amsthm}
\usepackage{amssymb}
% magnitude bars
\newcommand{\norm}[1]{\lvert #1 \rvert}
% explicit vector
\newcommand{\Ve}[1]{\langle #1 \rangle}
% named vector
\newcommand{\Vn}[1]{\vec{\bm{#1}}}
% a line with an arrow above
\newcommand{\Line}[1]{\overrightarrow{#1}}
\newcommand\Que[1]{%
\leavevmode\noindent
#1
}
\newcommand\Ans[2][]{%
\leavevmode\noindent
{
\begin{mdframed}[backgroundcolor=blue!10]
#2
\end{mdframed}
}
}
% this is like align but squashed
\newenvironment{salign}
{\par$\!\aligned}
{\endaligned$\par}
% a matrix, parameter is column count
\newenvironment{Mat}[1]{%
\left[\begin{array}{*{#1}{c}}
}{%
\end{array}\right]
}
% an augmented matrix, parameter is non-augmented column count
\newenvironment{Amat}[1]{%
\left[\begin{array}{@{}*{#1}{r}|r@{}}
}{%
\end{array}\right]
}
\begin{document}
\begin{enumerate}
\item Produce the row echelon form of the augmented matrix for the given system of equations. Specify the elementary row operations used to produce the matrix. Then give a (possibly parameterized) expression for all solutions in vector form, and identify whether the solution(s) corresponds to a point, line, or plane. If a solution does not exist, say so. Finally, give the rank of each coefficient matrix.
\begin{enumerate}[label=(\alph*)]
\item\Que{The system of equations:
\begin{minipage}[t]{0.25\textwidth}
\begin{flushright}
$8x+5y=25$\par $3x-7y=10$
\end{flushright}
\end{minipage}
}
\Ans{\begin{salign}
& ~~ 3R_1-8R_2 \to R_2 ~~~~ 213R_1-15R_2 \to R_1 ~~~~~\text{normalize}~~ \\
\begin{Amat}{2}
8 & 5 & 25 \\
3 & -7 & 10
\end{Amat}
&=
\begin{Amat}{2}
8 & 5 & 25 \\
0 & 71 & -5
\end{Amat}
=
\begin{Amat}{2}
1704 & 0 & 5400 \\
0 & 71 & -5
\end{Amat}
=
\begin{Amat}{2}
1 & 0 & \frac{225}{71} \\
0 & 1 & \frac{-5}{71}
\end{Amat}
\\
&= \text{ the point }\left(\frac{225}{71},\frac{-5}{71}\right) \in \mathbb{R}^2 \text{ with rank = 2}
\end{salign}
}
\item \Que{The system of equations:
\begin{minipage}[t]{0.25\textwidth}
\begin{flushright}
$2x+3y-4z=11$\\
$x+5y-2z=10$\\
$4x-3y-z=25$
\end{flushright}
\end{minipage}
}
\Ans{
\begin{salign}
& ~~~~~~ R_2-2R_1 \to R_2 ~~~~~~~~~ 9R_1+5R_3 \to R_1~~~~~~~~~~~~ \\
& ~~~~~~ R_3-2R_2 \to R_3 ~~~~~~~~~ 9R_2-7R_3 \to R_3~~~~~~~~~~~ 49R_1+17R_3 \to R_1\\
\begin{Amat}{3}
1 & 5 & -2 & 10 \\
2 & 3 & -4 & 11 \\
4 & -3 & -1 & 25
\end{Amat}
&=
\begin{Amat}{3}
1 & 5 & -2 & 10 \\
0 & -7 & 0 & 9 \\
0 & -9 & 7 & 3
\end{Amat}
=
\begin{Amat}{3}
9 & 0 & 17 & 105 \\
0 & -7 & 0 & 9 \\
0 & 0 & -49 & 60
\end{Amat}
=
\begin{Amat}{3}
441 & 0 & 0 & 6165 \\
0 & -7 & 0 & 9 \\
0 & 0 & -49 & 60
\end{Amat}
\\
& ~~~~~~ \text{normalize} \\
&=
\begin{Amat}{3}
1 & 0 & 0 & \frac{685}{49} \\
0 & 1 & 0 & \frac{-9}{7} \\
0 & 0 & 1 & \frac{-60}{49}
\end{Amat}
= \text{ the point }\left(\frac{685}{49},\frac{-9}{7},\frac{-60}{49}\right) \in \mathbb{R}^3 \text{ with rank = 3}
\end{salign}
}
\item \Que{The system of equations:
\begin{minipage}[t]{0.25\textwidth}
\begin{flushright}
$7x+5y=11$\\
$2x-4y=3$\\
$3x-2y=15$
\end{flushright}
\end{minipage}
}
\Ans{
\begin{salign}
& ~~~~ 2R_1-7R_2 \to R_2 \\
& ~~~~ 3R_1-7R_3 \to R_3~~~~~ \text{normalize}\\
\begin{Amat}{2}
7 & 5 & 11 \\
2 & -4 & 3 \\
3 & -2 & 15
\end{Amat}
&=
\begin{Amat}{2}
7 & 5 & 11 \\
0 & 38 & 1 \\
0 & 29 & -72
\end{Amat}
=
\begin{Amat}{2}
7 & 5 & 11 \\
0 & 1 & \frac{1}{38} \\
0 & 1 & \frac{-72}{29}
\end{Amat}
\\
& \text{and we have reached a contradiction since }
y=\frac{1}{38}
\text{ and }
y=\frac{-72}{29}
\text{ cannot both be true.}\\
& \text{Therefore this system has no solution.}
\end{salign}
}
\item \Que{The system of equations:
\begin{minipage}[t]{0.25\textwidth}
\begin{flushright}
$x+3y-2z=25$\\
$2x-5y+4z=10$
\end{flushright}
\end{minipage}
}
\Ans{
\begin{salign}
& ~~~~~~~~ R_2-2R_1 \to R_2 ~~~~~~~~~ 11R_1+3R_2 \to R_1 ~~~~~~~~~~ \text{normalize}\\
\begin{Amat}{3}
1 & 3 & -2 & 25 \\
2 & -5 & 4 & 10
\end{Amat}
&=
\begin{Amat}{3}
1 & 3 & -2 & 25 \\
0 & -11 & 8 & -40
\end{Amat}
=
\begin{Amat}{3}
11 & 0 & 2 & 155 \\
0 & -11 & 8 & -40
\end{Amat}
=
\begin{Amat}{3}
1 & 0 & \frac{2}{11} & \frac{155}{11} \\
0 & 1 & \frac{-8}{11} & \frac{40}{11}
\end{Amat}
\\
&= \text{ the line } L(s)=\left(\frac{155}{11},\frac{40}{11},0\right) + s\Ve{-2,8,11}
\text{ for all } s \in \mathbb{R} \\
& \text{matrix rank } = 2
\end{salign}
}
\newpage
\item \Que{The system of equations:
\begin{minipage}[t]{0.25\textwidth}
\begin{flushright}
$2x-4y+z=10$\\
$4x-8y+2z=25$
\end{flushright}
\end{minipage}
}
\Ans{
\begin{salign}
& ~~~~ R_2-2R_1 \to R_2\\
\begin{Amat}{3}
2 & -4 & 1 & 10 \\
4 & -8 & 2 & 25
\end{Amat}
&=
\begin{Amat}{3}
2 & -4 & 1 & 10 \\
0 & 0 & 0 & 5
\end{Amat}
& \text{and we have reached a system with no solutions.}
\end{salign}
}
\item \Que{The system of equations:
\begin{minipage}[t]{0.25\textwidth}
\begin{flushright}
$2x-4y+z=5$\\
$4x-8y+2z=30$
\end{flushright}
\end{minipage}
}
\Ans{
\begin{salign}
& ~~~~ R_2-2R_1 \to R_2 \\
\begin{Amat}{3}
2 & -4 & 1 & 10 \\
4 & -8 & 2 & 30
\end{Amat}
&=
\begin{Amat}{3}
2 & -4 & 1 & 10 \\
0 & 0 & 0 & 10
\end{Amat}
& \text{and we have reached a system with no solutions.}
\end{salign}
}
\end{enumerate}
~\\
\item
Let $\Vn{u} = \Ve{ u_1, u_2, u_3 }$ and $\Vn{v}=\Ve{ v_1, v_2, v_3 }$.
We want to find a vector perpendicular to both $\Vn{u}$ and $\Vn{v}$.
\begin{enumerate}[label=(\alph*)]
\item \Que{
Let the components of this vector be $\Ve{x_1,x_2,x_3}$.
Write down a system of equations corresponding to the requirement that this vector
be perpendicular to $\Vn{u}$ and $\Vn{v}$.
}
\Ans{
For any two vectors $\Vn{a}$ and $\Vn{b}$ to be perpendicular, $\Vn{a}\cdot\Vn{b}=0$ must be true.
\begin{align*}
\Vn{u} \cdot \Vn{x} &= 0 \\
\Vn{v} \cdot \Vn{x} &= 0
\shortintertext{which can be stated as}
u_1x_1+u_2x_2+u_3x_3 &=0 \\
v_1x_1+v_2x_2+v_3x_3 &=0
\end{align*}
}
\item \Que{
What is the rank of the corresponding coefficient matrix; what does this say about the number of vectors that are perpendicular to both $\Vn{u}$ and $\Vn{v}$; and why is this surprising?
}
\Ans{
\begin{salign}
& \frac{R_2}{v_1}-\frac{R_1}{u_1} \to R_2 ~~~ \frac{R_1}{u_1}-\frac{R_2u_1u_2v_1}{u_1(u_1v_2-u_2v_1)} \to R_1 ~~~ \frac{R_2u_1v_1}{u_1v_2-u_2v_1} \to R_2 \\
\begin{Amat}{3}
u_1 & u_2 & u_3 & 0 \\
v_1 & v_2 & v_3 & 0
\end{Amat}
&=
\begin{Amat}{3}
u_1 & u_2 & u_3 & 0 \\
0 & \frac{u_1v_2-u_2v_1}{u_1v_1} & \frac{u_1v_3-u_3v_1}{u_1v_1} & 0
\end{Amat}
=
\begin{Amat}{3}
1 & 0 & \frac{u_3v_2-u_2v_3}{u_1v_2-u_2v_1} & 0 \\
0 & 1 & \frac{u_1v_3-u_3v_1}{u_1v_2-u_2v_1} & 0
\end{Amat}
\\
&= (0,0,0) + s\Ve{u_2v_3-u_3v_2, u_3v_1-u_1v_3, u_1v_2-u_2v_1} \text{ for all } s \in \mathbb{R}
\end{salign}
matrix rank = 2\\
The solution is a line, thus there are an infinite number of vectors perpendicular to both $\Vn{u}$ and $\Vn{v}$.
}
\item \Que{
Find a vector perpendicular to $\Vn{u}$ and to $\Vn{v}$, whose components are \textit{not} fractional expressions of the components of $\Vn{u}$ and $\Vn{v}$. (It's possible the components are fractions or even real numbers; what you want to avoid is having a component like $\frac{u_1}{v_3}$)
}
\Ans{
Trivial answer: $\Vn{z} = \Ve{0,0,0}$ is perpendicular to both $\Vn{u}$ and $\Vn{v}$
since $\Vn{u}\cdot\Vn{z}=0$ and $\Vn{v}\cdot\Vn{z}=0$ are true. \\
General answer: $\Vn{x} = \Ve{u_2v_3-u_3v_2, u_3v_1-u_1v_3, u_1v_2-u_2v_1}$ is perpendicular to both
$\Vn{u}$ and $\Vn{v}$ as shown in the answer above.
}
\item \Que{
Find a vector perpendicular to $\Ve{1,1,-1}$ and $\Ve{2,1,-3}$. (This is called a \textbf{normal vector})
}
\Ans{
$\Vn{n}=\Ve{(1)(-3)-(-1)(1),(-1)(2)-(1)(-3),(1)(1)-(1)(2)} = \underline{\Ve{-2,1,-1}}$\\
verify: \\
$\Ve{1,1,-1}\cdot\Ve{-2,1,-1} = (1)(-2)+(1)(1)+(-1)(-1) = -2+1+1 = 0 \\
\Ve{2,1,-3}\cdot\Ve{-2,1,-1} = (2)(-2)+(1)(1)+(-3)(-1) = -4+1+3 = 0
$
}
\item \Que{
Let $X=(x,y,z)$ be a point in the plane containing the points $P=(1,2,4)$, $Q=(-3,-1,2)$, and $R=(1,1,0)$.
Write the equation of the plane. Suggestion: The vector perpendicular to $\Line{PQ}$ and $\Line{PR}$ will also be perpendicular to $\Line{PX}$.
}
\Ans{
Let
\begin{align*}
\Vn{u}&=\Line{PQ}=\Ve{-4,-3,-2},\\
\Vn{v}&=\Line{PR}=\Ve{ 0,-1,-4}, \\
\Vn{x}&=\Line{PX}=\Ve{x-1,y-2,z-4}, \\
\Vn{n} &=\Vn{u}\times\Vn{v}\\
&=\Ve{(-3)(-4)-(-2)(-1),(-2)(0)-(-4)(-4),(-4)(-1)-(-3)(0)}\\
&=\Ve{10,-16,4}
\end{align*}
Since we know that $\Vn{n}$ is perpendicular to both $\Vn{u}$ and $\Vn{v}$,
and that subsequently $\Vn{n}$ will be perpendicular to $\Line{PX}$ for any point $X$ on the plane,
to specify the plane we can solve the equation:
\begin{align*}
0 &= \Vn{n}\cdot\Vn{x} \\
&= 10(x-1)-16(y-2)+4(z-4) \\
&= 10x-16y+4z+6 \\
&= \underline{5x-8y+2z=-3}
\end{align*}
And we have found an equation for the plane.
\begin{align*}
\text{Verify: } &P: 5(1)-8(2)+2(4) &&= 5-16+8&=-3 ~~OK \\
\text{Verify: } &Q: 5(-3)-8(-1)+2(2)&&=-15+8+4&=-3 ~~OK \\
\text{Verify: } &R: 5(1)-8(1)+2(0) &&=5-8 &=-3 ~~OK
\end{align*}
}
\item \Que{
Find the distance between the point $(2,1,0)$ and the plane $PQR$.
}
\Ans{
Let
\begin{align*}
A&=(2,1,0) \text{ be the point of interest,} \\
\Vn{n}&=\Ve{5,-8,2} \text{ be a normal vector of the plane,} \\
\Vn{p}&=\Line{PA}=\Ve{1,-1,-4}
\shortintertext{To find the distance, we solve the equation:}
D &= \frac{\norm{\Vn{n}\cdot\Vn{p}}}{\norm{\Vn{n}}}
= \frac{\norm{5+8-8}}{\sqrt{25+64+4}}
= \frac{5}{\sqrt{93}}\approx\underline{0.5185}
\end{align*}
}
\end{enumerate}
\newpage
\item An important use of matrices is \textbf{stochastic modeling}. An example is the following: Imagine a park with three locations: a lake, a picnic area, and a playground. Every hour, on the hour, the parkgoers move according to the following rules:
\begin{itemize}
\item Half of those at the lake move to the picnic area, and one-quarter of those at the lake move to the playground.
\item Half of those at the picnic area move to the lake, and the other half go to the playground.
\item Half of those at the playground go to the picnic area.
\end{itemize}
Once they arrive, the parkgoers stay until the next hour, at which point they move again according to the same rules.
\begin{enumerate}[label=(\alph*)]
\item \Que{Suppose there are 100 persons at each location. How many persons are there at each of the locations one hour later? Suggestion: in life it is often easier to determine where you've come \textit{from} than it is to determine where you're going \textit{to}.}
\Ans{
\makebox[2cm][l]{picnic:} \makebox[3cm][l]{0 (stayed)} +
\makebox[3cm][l]{50 (from lake)} + \makebox[3cm][l]{50 (from playgr.)} = 100\\
\makebox[2cm][l]{lake:} \makebox[3cm][l]{50 (from picnic)} +
\makebox[3cm][l]{25 (stayed)} + \makebox[3cm][l]{0 (from playgr.)} = 75\\
\makebox[2cm][l]{playground:} \makebox[3cm][l]{50 (from picnic)} +
\makebox[3cm][l]{25 (from lake)} + \makebox[3cm][l]{50 (stayed)} = 125
}
\item \Que{Let $p_n$, $l_n$, $g_n$ be variables representing the number of persons at the picnic area, lake, and playground at hour $n$. write down equations for $p_{n+1}$, $l_{n+1}$, $g_{n+1}$, giving the number of persons at the picnic area, lake, and playground at hour $n+1$.}
\Ans{
\begin{salign}
p_{n+1} &= 0p_n + (1/2)l_n + (1/2)g_n \\
l_{n+1} &= (1/2)p_n + (1/4)l_n + 0g_n \\
g_{n+1} &= (1/2)p_n + (1/4)l_n + (1/2)g_n
\end{salign}
}
\item \Que{Write down the coefficient matrix $T$ for the system of equations you just wrote. }
\Ans{
$ T =
\begin{Mat}{3}
0 & 1/2 & 1/2 \\
1/2 & 1/4 & 0 \\
1/2 & 1/4 & 1/2
\end{Mat}
$
}
\item \Que{
One of the following could be a stochastic matrix and the other cannot. Identify the matrix that cannot be a stochastic matrix and explain why. Also give the corresponding movement rules for the valid matrix.
\[
A = \begin{Mat}{3}
1/2 & 1/4 & 1/2 \\
1/2 & 1/4 & 1/2 \\
0 & 1/2 & 1/4
\end{Mat}
\text{ }
B = \begin{Mat}{3}
1/4 & 0 & 1/3 \\
1/2 & 1/2 & 1/6 \\
1/4 & 1/2 & 1/2
\end{Mat}
\]
}
\Ans{matrix $A$ cannot be a stochastic matrix because the $g_n$ column doesn't sum to one; it would basically be saying that people from the playground go to two places simultaneously. \\
The rules for matrix B:
\begin{itemize}
\item 1/4 of those at the picnic area go to the playground, and 1/2 of those at the picnic go to the lake
\item 1/2 of those at the lake go to the playground
\item 1/3 of those at the playground go to the picnic, and 1/6 at the playground go to the lake
\end{itemize}
}
\item \Que{Generalize your observation: A matrix $M$ can be a stochastic model provided ...}
\Ans{
Each column sums to one since every member of the population present at $t=n$ must be present at $t=n+1$.
Each row doesn't necessarily have to sum to one since the population can move between unique places.
The matrix should be square since the row and columns both correspond to the number of unique places.
}
\end{enumerate}
\newpage
\item Another use of matrices is for \textbf{discrete time modeling}. Consider the following problem:\\
Suppose you have a pair of rabbits that breed according to the following rules:
\begin{itemize}
\item Rabbits mature after two months, and will produce a pair of rabbits every month after.
\item The pair of rabbits are always male/female, and mature rabbits will always find a mate.
\item No rabbits die.
\end{itemize}
Let $x_n$ be the number of pairs of immature rabbits at the end of month $n$, and let $y_n$ be the number of pairs of mature rabbits at the end of month $n$.
\begin{enumerate}[label=(\alph*)]
\item \Que{What are $x_0$ and $y_0$?}
\Ans{$x_0=1$\ and $y_0=0$}
\item \Que{Find $x_1$ and $y_1$.}
\Ans{$x_1=0$\ and $y_1=1$}
\item \Que{Suppose you know $x_n$ and $y_n$. How would you find $x_{n+1}$ and $y_{n+1}$?}
\Ans{$x_{n+1}=y_n$\ and $y_{n+1}=x_n+y_n$}
\item \Que{Treating $x_n$ and $y_n$ as our twin variables, write down the coefficient matrix for the system of equations that give the values for $x_{n+1}$ and $y_{n+1}$. }
\Ans{
$
\begin{Mat}{2}
x_{n+1} &= 0x_n + 1y_n \\
y_{n+1} &= 1x_n + 1y_n
\end{Mat}
=
\begin{Mat}{2}
0 & 1 \\
1 & 1
\end{Mat}
$
}
\item \Que{Note that this matrix cannot be a stochastic matrix. What essential difference exists between the rabbit problem and the park problem?}
\Ans{The park problem is a ``zero sum game" where the population is fixed, therefore the columns must each sum to one. The rabbit problem involves a growth in population, therefore it would be expected that at least one column sums to greater than one. }
\end{enumerate}
\newpage
\item Answer the following questions. Let $\Vn{v}=\Ve{2,1,3,4}$ and $\Vn{u}=\Ve{1,1,-1,2}$.
\begin{enumerate}[label=(\alph*)]
\item \Que{Find the angle $\theta$ between $\Vn{v}$ and $\Vn{u}$.}
\Ans{
\begin{align*}
\cos{\theta} &= \frac{\Vn{u}\cdot\Vn{v}}{\norm{\Vn{u}}\norm{\Vn{v}}}
= \frac{2+1-3+8}{\sqrt{30}\sqrt{7}}=\frac{8}{\sqrt{210}} \\
\arccos{\frac{8}{\sqrt{210}}} &\approx 0.98597\text{(rad)} \approx \underline{56.49^{\circ}}
\end{align*}
}
\item \Que{Find a unit vector (a vector with length 1) that goes in the same direction as $\Vn{v}$.}
\Ans{
$
\frac{1}{\norm{\Vn{v}}}\Vn{v}=\frac{1}{\sqrt{30}}\Ve{2,1,3,4}
= \underline{\Ve{\frac{2}{\sqrt{30}},\frac{1}{\sqrt{30}},\frac{3}{\sqrt{30}},\frac{4}{\sqrt{30}}}}
$
}
\item \Que{Find $3\Vn{v}-2\Vn{u}$.}
\Ans{
$3\Vn{v}-2\Vn{u}=3\Ve{2,1,3,4}-2\Ve{1,1,-1,2}=\Ve{6,3,9,12}-\Ve{2,2,-2,4}=\underline{\Ve{4,1,11,8}}$
}
\item \Que{Find $a,b$ such that $a\Vn{v}+b\Vn{u}$ is perpendicular to $3\Vn{v}-2\Vn{u}$.}
\Ans{
\begin{align*}
0&=(a\Vn{v}+b\Vn{u})\cdot\Ve{4,1,11,8} \\
&=\Ve{2a+b,a+b,3a-b,4a+2b}\cdot\Ve{4,1,11,8} \\
&=4(2a+b)+(a+b)+11(3a-b)+8(4a+2b) \\
&=8a+4b+a+b+33a-11b+32a+16b \\
&=74a+10b \\
b&=-\frac{74a}{10}
\end{align*}
Therefore a solution could be $a=10$ and $b=-74$. \\
Verify:
\begin{align*}
10\Vn{v}-74\Vn{u} &= 10\Ve{2,1,3,4}-74\Ve{1,1,-1,2} \\
&= \Ve{20-74,10-74,30+74,40-148} \\
&= \Ve{-54,-64,104,-108} \\
\Ve{-54,-64,104,-108}\cdot\Ve{4,1,11,8} &= (-54)(4)+(-64)(1)+(104)(11)+(-108)(8) \\
&= (-216) + (-64) + (1144) + (-864) = 0 ~~ \text{OK}
\end{align*}
}
\end{enumerate}
\end{enumerate}
\end{document}