forked from Kyubyong/tacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
72 lines (56 loc) · 2.31 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
By kyubyong park. kbpark.linguist@gmail.com.
https://www.github.com/kyubyong/tacotron
'''
from __future__ import print_function
import codecs
import copy
import os
import librosa
from scipy.io.wavfile import write
from hyperparams import Hyperparams as hp
import numpy as np
from prepro import *
import tensorflow as tf
from train import Graph
from utils import *
def eval():
# Load graph
g = Graph(is_training=False)
print("Graph loaded")
# Load data
X = load_eval_data() # texts
char2idx, idx2char = load_vocab()
with g.graph.as_default():
sv = tf.train.Supervisor()
with sv.managed_session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# Restore parameters
sv.saver.restore(sess, tf.train.latest_checkpoint(hp.logdir))
print("Restored!")
# Get model
mname = open(hp.logdir + '/checkpoint', 'r').read().split('"')[1] # model name
timesteps = 100 # Adjust this number as you want
outputs1 = np.zeros((hp.num_samples, timesteps, hp.n_mels * hp.r), np.float32) # hp.n_mels*hp.r
for j in range(timesteps):
_outputs1 = sess.run(g.outputs1, {g.x: X, g.y: outputs1})
outputs1[:, j, :] = _outputs1[:, j, :]
outputs2 = sess.run(g.outputs2, {g.outputs1: outputs1})
# Generate wav files
if not os.path.exists(hp.outputdir): os.mkdir(hp.outputdir)
with codecs.open(hp.outputdir + '/text.txt', 'w', 'utf-8') as fout:
for i, (x, s) in enumerate(zip(X, outputs2)):
# write text
fout.write(str(i) + "\t" + "".join(idx2char[idx] for idx in np.fromstring(x, np.int32) if idx != 0) + "\n")
s = restore_shape(s, hp.win_length//hp.hop_length, hp.r)
# generate wav files
if hp.use_log_magnitude:
audio = spectrogram2wav(np.power(np.e, s)**hp.power)
else:
s = np.where(s < 0, 0, s)
audio = spectrogram2wav(s**hp.power)
write(hp.outputdir + "/{}_{}.wav".format(mname, i), hp.sr, audio)
if __name__ == '__main__':
eval()
print("Done")