-
Notifications
You must be signed in to change notification settings - Fork 9
/
linear_movement_vibrations.py
437 lines (395 loc) · 20.1 KB
/
linear_movement_vibrations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# vibration measurements for linear, non accelerated movements
# reads adxl and analyses the output for vibrations at linear movements on a defined axis.
# Acceleration phase is not part of the analysis
#
# Copyright (C) 2022 Marc Marschall <discrod:MarschallMarc#6420>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import datetime
import matplotlib
import numpy as np
import os
from matplotlib import pyplot as plt
# calculates the mean square of 3d acceleration data summing up all three components
# @param data: array[[t0, x0, y0, z0],...,[tn, xn, yn, zn]]
# @return pd::float
def calculate_total_power(data):
pd = 0
norm = len(data)
for t, x, y, z in data:
pd += (abs(x) + abs(y) + abs(z)) * (abs(x) + abs(y) + abs(z)) / norm
return pd
# calculates the frequency spectrum via fft in a given dataset
# @param data: array[[t0, x0, y0, z0],...,[tn, xn, yn, zn]]
# @param f_max::float : maximum frequency considered
def calculate_frequencies(data, f_max, f_min):
dt = (data[len(data) - 1][0] - data[0][0]) / (len(data) - 1)
norm = data[:, 0].size
absc_fourier = np.fft.rfftfreq(norm, dt)
start_pos = np.argmax(absc_fourier >= f_min)
end_pos = np.argmax(absc_fourier >= f_max)
if end_pos == 0:
end_pos = data[:, 0].size
frequency_response = [absc_fourier[start_pos:end_pos]]
for axis in range(1, 4):
ord_fourier = np.abs(np.fft.rfft(data[:, axis]))
frequency_response.append(ord_fourier[start_pos:end_pos])
return frequency_response
# checks if movement is diagonal and corrects its destination to be a diagonal movement if not
# by using the point towards the center which is the closest to the original fulfilling diagonality
# @param p1_x x-coordinate of starting point
# @param p2_x x-coordinate of the target point
def verify_and_correct_diagonal_move(p1_x, p1_y, p2_x, p2_y):
if abs(p1_x - p2_x) > abs(p1_y - p2_y):
p2_x = p1_x + p2_y - p1_y
elif abs(p1_x - p2_x) < abs(p1_y - p2_y):
p2_y = p1_y + p2_x - p1_x
return p2_x, p2_y
# source: stepper.py
def parse_full_step_distance(config, units_in_radians=None, note_valid=False):
if units_in_radians is None:
# Caller doesn't know if units are in radians - infer it
rd = config.get('rotation_distance', None, note_valid=False)
gr = config.get('gear_ratio', None, note_valid=False)
units_in_radians = rd is None and gr is not None
if units_in_radians:
rotation_dist = 2. * np.pi
config.get('gear_ratio', note_valid=note_valid)
else:
rotation_dist = config.getfloat('rotation_distance', above=0.,
note_valid=note_valid)
# Newer config format with rotation_distance
full_steps = config.getint('full_steps_per_rotation', 200, minval=1,
note_valid=note_valid)
if full_steps % 4:
raise config.error("full_steps_per_rotation invalid in section '%s'"
% (config.get_name(),))
gearing = parse_gear_ratio(config, note_valid)
return rotation_dist, full_steps * gearing
# source: stepper.py
def parse_gear_ratio(config, note_valid):
gear_ratio = config.getlists('gear_ratio', (), seps=(':', ','), count=2,
parser=float, note_valid=note_valid)
result = 1.
for g1, g2 in gear_ratio:
result *= g1 / g2
return result
class LinearMovementVibrationsTest:
def __init__(self, config):
self.printer = config.get_printer()
self.printer.register_event_handler("klippy:connect", self.connect)
self.gcode = self.printer.lookup_object('gcode')
description = "Measure vibrations at linear movements. Usage:"
self.gcode.register_command("MEASURE_LINEAR_VIBRATIONS",
self.cmd_MEASURE_LINEAR_VIBRATIONS,
description)
description = "Measure vibrations at linear movements in a velocity range. Usage:"
self.gcode.register_command("MEASURE_LINEAR_VIBRATIONS_RANGE",
self.cmd_MEASURE_LINEAR_VIBRATIONS_RANGE,
description)
# get accel chips, source: resonance_tester.py, should be refactored into helper function on merge
if not config.get('accel_chip_x', None):
self.accel_chip_names = [('xy', config.get('accel_chip').strip())]
else:
self.accel_chip_names = [
('x', config.get('accel_chip_x').strip()),
('y', config.get('accel_chip_y').strip())]
if self.accel_chip_names[0][1] == self.accel_chip_names[1][1]:
self.accel_chip_names = [('xy', self.accel_chip_names[0][1])]
self.out_directory = config.get('output_directory')
self.limits = self._get_limits_from_config(config)
self.stepper_configs = self._get_stepper_configs(config)
def cmd_MEASURE_LINEAR_VIBRATIONS_RANGE(self, gcmd):
axis = self._get_axis(gcmd)
motion_report = self.printer.lookup_object('motion_report')
v_min, v_max, v_step = self._get_velocity_range(gcmd)
f_max = gcmd.get_int("FMAX", 2*v_max)
powers = []
peak_frequencies = []
frequency_responses = []
limits = self._get_limits_from_gcode(gcmd, self.limits)
start_pos, end_pos = self._get_move_positions(axis, limits, gcmd)
for velocity in range(v_min, v_max + 1, v_step):
gcmd.respond_info("measuring {} mm/s".format(velocity))
# collect data and add them to the sets
measurement_data = self._measure_linear_movement_vibrations(velocity, start_pos, end_pos, motion_report)
frequency_response = np.array(
calculate_frequencies(measurement_data, f_max, gcmd.get_int("FMIN", 5)))
mapped_frequency_response = self._map_r3_response_to_single_axis(frequency_response)
frequency_responses.append([velocity, frequency_response[0], mapped_frequency_response])
summed_max_index = np.argmax(mapped_frequency_response)
peak_frequency = frequency_response[0][summed_max_index]
peak_frequencies.append([velocity, peak_frequency])
power = calculate_total_power(measurement_data)
powers.append([velocity, power])
# reverse movement
start_pos_last = start_pos
start_pos = end_pos
end_pos = start_pos_last
if not os.path.exists(self.out_directory):
os.makedirs(self.out_directory)
outfile = self._get_outfile_name(self.out_directory, "relative_power")
self._plot_relative_power(powers, outfile, axis, gcmd)
outfile = self._get_outfile_name(self.out_directory, "peak_frequencies")
outfilelog = self._get_outfile_name(self.out_directory, "peak_frequencies_logscale")
rotation_dist, step_distance = self._get_step_distance(axis, self.stepper_configs)
self._plot_peak_frequencies(peak_frequencies, outfile, outfilelog, axis, gcmd,
d=gcmd.get_float("D_IDLER", None),
step_distance=step_distance, rotation_distance=rotation_dist, f_max=f_max)
outfile = self._get_outfile_name(self.out_directory, "frequency_responses_v-range")
self._plot_frequency_responses_over_velocity(frequency_responses, outfile, axis, gcmd)
def cmd_MEASURE_LINEAR_VIBRATIONS(self, gcmd):
axis = self._get_axis(gcmd)
velocity = self._get_velocity(gcmd)
motion_report = self.printer.lookup_object('motion_report')
limits = self._get_limits_from_gcode(gcmd, self.limits)
start_pos, end_pos = self._get_move_positions(axis, limits, gcmd)
measurement_data = self._measure_linear_movement_vibrations(velocity, start_pos, end_pos, motion_report)
f_max = gcmd.get_int("FMAX", 2*velocity)
frequency_response = calculate_frequencies(measurement_data, f_max,
gcmd.get_int("FMIN", 5))
if not os.path.exists(self.out_directory):
os.makedirs(self.out_directory)
outfile = self._get_outfile_name(self.out_directory, ("linear_movement_responce_" + str(velocity) + "mmps_"))
rotation_dist, step_distance = self._get_step_distance(axis, self.stepper_configs)
self._plot_frequencies(frequency_response, outfile, velocity, axis, gcmd, d=gcmd.get_float("D_IDLER", None),
step_distance=step_distance, rotation_distance=rotation_dist, f_max=f_max)
def _measure_linear_movement_vibrations(self, velocity, start_pos, end_pos, motion_report):
accel = self.toolhead.max_accel
self.gcode.run_script_from_command("SET_VELOCITY_LIMIT ACCEL={} ACCEL_TO_DECEL={}".format(accel, accel))
x_pos, y_pos, z_pos, e_pos = self.toolhead.get_position()
self.toolhead.move([start_pos[0], start_pos[1], z_pos, e_pos], velocity)
self.toolhead.wait_moves()
measurement_handler = [(adxl_axis_attached, accel_chip.start_internal_client())
for adxl_axis_attached, accel_chip in self.accel_chips]
self.toolhead.move([end_pos[0], end_pos[1], z_pos, e_pos], velocity)
self.toolhead.wait_moves()
measurement_data = []
# stop measurement
for adxl_axis_attached, accel_chip_client in measurement_handler:
accel_chip_client.finish_measurements()
if not accel_chip_client.has_valid_samples():
raise self.gcode.error("No data received from accelerometer")
else:
measurement_data = np.asarray(accel_chip_client.get_samples())
measurement_data_stripped = self._strip_to_linear_velocity_share(velocity, measurement_data, motion_report,
self.gcode)
return measurement_data_stripped
@staticmethod
def _get_stepper_configs(config):
stepper_config = []
for stepper in ['stepper_x', 'stepper_y']:
stepper_config.append(config.getsection(stepper))
return stepper_config
@staticmethod
def _get_step_distance(axis, config):
rotation_dist = step_distance = None
if axis.lower() in 'x':
rotation_dist, step_distance = parse_full_step_distance(config[0])
elif axis.lower() in 'y':
rotation_dist, step_distance = parse_full_step_distance(config[1])
return rotation_dist, step_distance
@staticmethod
def _strip_to_linear_velocity_share(velocity, data, motion_report, gcmd):
# find time stamp of linear movement start
velocity_not_reached = True
for i in range(len(data)):
if motion_report.trapqs['toolhead'].get_trapq_position(data[i, 0])[1] == velocity:
data = data[i:]
velocity_not_reached = False
break
for i in range(len(data)):
if motion_report.trapqs['toolhead'].get_trapq_position(data[i, 0])[1] < velocity:
data = data[0:(i - 1)]
break
if velocity_not_reached or len(data) < 300:
raise gcmd.error("Target velocity not reached for a sufficient amount of time. Either decrease target "
"velocity, increase acceleration or increase test area ")
return data
@staticmethod
def _map_r3_response_to_single_axis(frequency_response):
combined_array = np.array([frequency_response[1], frequency_response[2], frequency_response[3]])
mapped_frequency_response = combined_array.sum(axis=0)
return mapped_frequency_response
@staticmethod
def _get_limits_from_config(config):
x_min = int(config.get('x_min'))
x_max = int(config.get('x_max'))
y_min = int(config.get('y_min'))
y_max = int(config.get('y_max'))
return x_min, x_max, y_min, y_max
@staticmethod
def _get_limits_from_gcode(gcmd, limits):
x_min = gcmd.get_int("XMIN", limits[0])
x_max = gcmd.get_int("XMAX", limits[1])
y_min = gcmd.get_int("YMIN", limits[2])
y_max = gcmd.get_int("YMAX", limits[3])
return x_min, x_max, y_min, y_max
@staticmethod
def _get_move_positions(axis, limits, gcmd):
p1_x = p1_y = p2_x = p2_y = 0
if axis.lower() == "x":
p1_x = limits[0]
p1_y = limits[3] / 2
p2_x = limits[1]
p2_y = p1_y
elif axis.lower() == "y":
p1_x = limits[1] / 2
p1_y = limits[2]
p2_x = p1_x
p2_y = limits[3]
elif axis.lower() == "a":
p1_x = limits[0]
p1_y = limits[2]
p2_x = limits[1]
p2_y = limits[3]
p2_x, p2_y = verify_and_correct_diagonal_move(p1_x, p1_y, p2_x, p2_y)
elif axis.lower() == "b":
p1_x = limits[1]
p1_y = limits[2]
p2_x = limits[0]
p2_y = limits[3]
p2_x, p2_y = verify_and_correct_diagonal_move(p1_x, p1_y, p2_x, p2_y)
p1_x = gcmd.get_int("STARTX", p1_x)
p1_y = gcmd.get_int("STARTY", p1_y)
p2_x = gcmd.get_int("ENDX", p2_x)
p2_y = gcmd.get_int("ENDY", p2_y)
return [p1_x, p1_y], [p2_x, p2_y]
@staticmethod
def _get_velocity_range(gcmd):
vmin = gcmd.get_int("VMIN", None)
vmin = (vmin, 50)[vmin is None]
vmax = gcmd.get_int("VMAX", None)
vmax = (vmax, 300)[vmax is None]
vstep = gcmd.get_int("STEP", None)
vstep = (vstep, 10)[vstep is None]
return vmin, vmax, vstep
def _get_velocity(self, gcmd):
velocity = gcmd.get_int("VELOCITY", None)
velocity = (velocity, 150)[velocity is None]
if self.toolhead.max_velocity < velocity:
raise gcmd.error("Requested velocity '{}' succeeds printer limits".format(velocity))
return velocity
@staticmethod
def _get_axis(gcmd):
axis = gcmd.get("AXIS", None)
axis = (axis, "x")[axis is None]
if axis.lower() not in 'xyab':
raise gcmd.error("Unsupported axis'{}'".format(axis))
return axis
@staticmethod
def _get_outfile_name(directory, filename):
return directory + filename + datetime.datetime.today().isoformat() + ".png"
def connect(self):
self.toolhead = self.printer.lookup_object('toolhead')
# identical to ResonanceTester.connect, should be moved to helper function on merge
self.accel_chips = [
(chip_axis, self.printer.lookup_object(chip_name))
for chip_axis, chip_name in self.accel_chip_names]
@staticmethod
def _plot_frequencies(data, outfile, velocity, axis, gcmd, d=None, step_distance=None, rotation_distance=None,
f_max=120):
plt.ioff()
fig = plt.figure()
fig.suptitle("Vibrations while {}mm/s linear movement on {} axis".format(velocity, axis))
ax = plt.subplot(111)
box = ax.get_position()
# shrink and move up to allow legend beneeth
ax.set_position([box.x0, box.y0 + box.height * 0.18, box.width, box.height * 0.85])
plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
ax.set_xlabel("frequency in Hz")
ax.set_ylabel("response")
ax.set_xlim(data[0][0],f_max)
ax.axvline(x=velocity / 2, label="2gt belt pitch", ls='--', color='tab:brown')
ax.axvline(x=velocity / 1.21, label="2gt belt teeth width", ls='--', color='black')
ax.axvline(x=velocity / 0.80, label="2gt belt valley width", ls='--', color='tab:cyan')
ax.axvline(x=velocity / 0.40, label="2gt belt flat width", ls='--', color='tab:brown')
if d is not None:
ax.axvline(velocity / (np.pi * d), label="idler rotation", ls='--', color='tab:gray')
if step_distance is not None:
ax.axvline(velocity / rotation_distance, label="pulley rotation", ls='--', color='tab:olive')
if rotation_distance is not None:
ax.axvline(velocity * step_distance / rotation_distance, label="motor step", ls='--', color='tab:pink')
ax.plot(data[0], data[1], label="x")
ax.plot(data[0], data[2], label="y")
ax.plot(data[0], data[3], label="z")
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.13), fancybox=True, shadow=False, ncol=4)
#add second abscissa
ax2 = ax.twiny()
ax2.set_xlim(ax.get_xlim())
ax2.set_position([box.x0, box.y0 + box.height * 0.18, box.width, box.height * 0.85])
ax2.tick_params(axis="x",direction="in", pad=-15)
ax2.set_xticklabels(['{0:.2f}'.format(velocity/x) for x in ax.get_xticks()])
ax2.set_xlabel("pattern distance in mm")
plt.savefig(outfile)
gcmd.respond_info("output written to {}".format(outfile))
plt.close('all')
@staticmethod
def _plot_relative_power(data, outfile, axis, gcmd):
data = np.array(data)
plt.ioff()
plt.title("Vibration power for axis {}".format(axis))
plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
plt.xlabel("velocity in mm/s")
plt.ylabel("relative power")
plt.plot(data[:, 0], data[:, 1], marker='o', label="measurement data")
plt.savefig(outfile)
gcmd.respond_info("output written to {}".format(outfile))
plt.close('all')
@staticmethod
def _plot_peak_frequencies(data, outfile, outfilelog, axis, gcmd, d=None, step_distance=None,
rotation_distance=None, f_max=200):
data = np.array(data)
plt.ioff()
fig = plt.figure()
fig.suptitle("Vibration peak frequencies for axis {}".format(axis))
ax = plt.subplot(111)
box = ax.get_position()
ax.set_position([box.x0, box.y0 + box.height * 0.18, box.width, box.height * 0.85])
ax.set_xlabel("velocity in mm/s")
ax.set_ylabel("peak frequency in Hz")
ax.set_ylim(0, f_max)
ax.plot(data[:, 0], data[:, 1], linestyle='--', marker='o', label="measurement data")
ax.plot(data[:, 0], data[:, 0] / 2, label="2gt belt pitch")
ax.plot(data[:, 0], data[:, 0] / 1.21, label="2gt belt teeth width")
ax.plot(data[:, 0], data[:, 0] / .8, label="2gt belt valley width")
ax.plot(data[:, 0], data[:, 0] / .4, label="2gt belt valley flat width")
if d is not None:
ax.plot(data[:, 0], data[:, 0] / (np.pi * d), label="idler rotation")
if step_distance is not None:
ax.plot(data[:, 0], data[:, 0] / rotation_distance, label="pulley rotation")
if rotation_distance is not None:
ax.plot(data[:, 0], data[:, 0] * step_distance / rotation_distance, label="motor step")
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.13), fancybox=True, shadow=False, ncol=3)
plt.savefig(outfile)
gcmd.respond_info("output written to {}".format(outfile))
ax.set_yscale('log')
plt.axhline(y=f_max, color='tab:olive', linestyle='--', label="f_max")
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.13), fancybox=True, shadow=False, ncol=3)
ax.set_autoscaley_on(True)
plt.autoscale(True)
fig.suptitle("Vibration peak frequencies for axis {}, f_max = {}Hz ".format(axis, f_max))
plt.savefig(outfilelog)
gcmd.respond_info("output written to {}".format(outfilelog))
plt.close('all')
@staticmethod
def _plot_frequency_responses_over_velocity(data, outfile, axis, gcmd):
data = np.array(data)
plt.ioff()
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
fig.suptitle("Vibration peak frequencies for axis {}".format(axis))
ax.ticklabel_format(style='sci', axis='z', scilimits=(0, 0))
for velocity_sample in data:
x = velocity_sample[1]
y = velocity_sample[2]
z = velocity_sample[0]
ax.plot(x, y, zs=z, zdir='y')
ax.set_xlabel("f in Hz")
ax.set_zlabel("relative response")
ax.set_ylabel("velocity")
plt.savefig(outfile)
gcmd.respond_info("output written to {}".format(outfile))
plt.close('all')
def load_config(config):
return LinearMovementVibrationsTest(config)