-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlx_align3.c
663 lines (610 loc) · 17.1 KB
/
lx_align3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
/* updated 20-May-1998 by Z. Zhang */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define SGW1 100
#define SGW2 300
#define WIDTH 60
#define max(a,b) ((a) > (b) ? (a) : (b))
/* code above is to convert sequence into numbers */
typedef struct mat *match_ptr;
typedef struct mat {
int i, j, l;
match_ptr next;
} match_node;
typedef struct {
int i,j;
} state;
typedef state *state_ptr;
typedef struct st_s { int C, I, D;} *st_ptr;
static st_ptr up, down, tp;
static int *st_up;
static int gop, gext, shift;
void *ckalloc();
static match_ptr small_global(), global();
static local_align(), find_best(), init_row(), init_ROW();
void fatal(char *);
int
pro_dna(char *prot_seq, /* array with protein sequence numbers*/
int len_prot, /* length of prot. seq */
char *dna_prot_seq, /* translated DNA sequence numbers*/
int len_dna_prot, /* length trans. seq. */
int pam_matrix[][32], /* scoring matrix */
int gopen, int gex, /* gap open, gap extend penalties */
int gshift, /* frame-shift penalty */
int *alignment, /*store the alignment*/
int *nres)
{
match_ptr align, ap, aq;
int x, y, ex, ey, i;
int score;
gext = gex; gop = gopen; shift = gshift;
up = (st_ptr) ckalloc(sizeof(struct st_s)*(len_dna_prot+6));
down = (st_ptr) ckalloc(sizeof(struct st_s)*(len_dna_prot+6));
tp = (st_ptr) ckalloc(sizeof(struct st_s)*(len_dna_prot+6));
st_up = (int *) ckalloc(sizeof(int)*(len_dna_prot+6));
/*local alignment find the best local alignment x and y
is the starting position of the best local alignment
and ex ey is the ending position */
score = local_align(&x, &y, &ex, &ey, pam_matrix,dna_prot_seq, len_dna_prot,
prot_seq, len_prot);
up += 3; down+=3; tp+=3;
align = global(x, y, ex, ey, pam_matrix, dna_prot_seq, prot_seq, 0, 0);
alignment[0] = x; alignment[1] = y;
for (ap = align, i= 2; ap; i++) {
alignment[i] = ap->l; aq = ap->next; free(ap); ap = aq;
}
free(up-3); free(tp-3); free(down-3); free(st_up);
*nres = i;
return score;
}
static void swap(a, b)
void **a, **b;
{
void *t = *a;
*a = *b; *b = t;
}
/*
local alignment find the best local alignment x and y
is the starting position of the best local alignment
and ex ey is the ending position
*/
static local_align(x, y, ex, ey, wgts, dnap, ld, pro, lp)
int *x, *y, *ex, *ey, ld, wgts[][32], lp;
char *dnap, *pro;
{
int i, j, score, x1,x2,x3,x4, e1, e2 = 0, e3,
sc, del, e, best = 0, *wt, cd, ci;
state_ptr cur_st, last_st, cur_i_st;
st_ptr cur, last;
char *dp;
int *cur_d_st;
/*
Array rowiC store the best scores of alignment ending at a position
Arrays rowiD, and rowiI store the best scores of alignment ending
at a position with a deletion or insrtion
Arrays sti stores the starting position of the best alignment whose
score stored in the corresponding row array.
The program stores two rows to complete the computation, same is
for the global alignment routine.
*/
ld += 2;
init_ROW(up, ld+1);
init_ROW(down, ld+1);
init_row(st_up, ld+3);
cur = up+1;
last = down+1;
cur_st = (state_ptr) ckalloc(sizeof(state)*(ld+1));
last_st = (state_ptr) ckalloc(sizeof(state)*(ld+1));
cur_i_st = (state_ptr) ckalloc(sizeof(state)*(ld+1));
cur_d_st = st_up;
dp = dnap-2;
for (i = 0; i < lp; i++) {
wt = &wgts[pro[i]][0];
for (j = 0; j < 2; j++) {
cur_st[j].i = i+1;
cur_st[j].j = j+1;
}
for (j = 2; j < ld; j++) {
score = wt[dp[j]];
del = -1;
if (j >= 3) {
sc = -score;
e3 = e2-shift; e2 = last[j-3].C;
e1 = last[j-2].C-shift;
if (e1 > sc) {sc = e1; del = 2;}
if (e2 > sc) {sc = e2; del = 3;}
if (e3 > sc) {sc = e3; del = 4;}
} else {
sc = e2 = 0;
if (sc < -score) sc=-score;
else del = 3;
}
sc += score;
if (sc < (ci=last[j].I)) {
sc = ci; del = 0;
}
if (sc < (cd=cur[j].D)) {
sc = cd; del = 5;
}
cur[j].C = sc;
e = sc - gop;
if (e > cd) {
cur[j+3].D = e-gext;
cur_d_st[j+3] = 3;
} else {
cur[j+3].D = cd-gext;
cur_d_st[j+3] = cur_d_st[j]+3;
}
switch(del) {
case 5:
e1 = cur_d_st[j];
cur_st[j].i = cur_st[j-e1].i;
cur_st[j].j = cur_st[j-e1].j;
break;
case 0:
cur_st[j].i = cur_i_st[j].i;
cur_st[j].j = cur_i_st[j].j;
break;
case 2:
case 3:
case 4:
if (i) {
if (j-del >= 0) {
cur_st[j].i = last_st[j-del].i;
cur_st[j].j = last_st[j-del].j;
} else {
cur_st[j].i = i;
cur_st[j].j = 0;
}
} else {
cur_st[j].i = 0;
cur_st[j].j = max(0, j-del+1);
}
break;
case -1:
cur_st[j].i = i+1;
cur_st[j].j = j+1;
break;
}
if (e > ci) {
cur[j].I = e -gext;
cur_i_st[j].i = cur_st[j].i;
cur_i_st[j].j = cur_st[j].j;
} else {
cur[j].I = ci- gext;
}
if (sc > best) {
x1 = cur_st[j].i;
x2 = cur_st[j].j;
best =sc;
x3 = i;
x4 = j;
}
}
swap(&last, &cur);
swap(&cur_st, &last_st);
}
/* printf("The best score is %d\n", best); */
*x = x1; *y = x2; *ex = x3; *ey = x4;
free(cur_st); free(last_st); free(cur_i_st);
return best;
}
/*
Both global_up and global_down do linear space score only global
alignments on subsequence pro[x]...pro[ex], and dna[y]...dna[ey].
global_up do the algorithm upwards, from row x towards row y.
global_down do the algorithm downwards, from row y towards x.
*/
static global_up(row1, row2, x, y, ex, ey, wgts, dnap, pro, N)
st_ptr *row1, *row2;
int x, y, ex, ey, wgts[][32];
char *dnap, *pro;
int N;
{
int i, j, k, sc, e, e1, e2, e3, t, ci, cd, score, *wt;
st_ptr cur, last;
cur = *row1; last = *row2;
sc = -gop-gext;
for (j = 1; j <= ey-y+1; j++) {
if (j % 3 == 0) {last[j].C = sc; sc -= gext; last[j].I = sc-gop;}
else { last[j].I = last[j].C = -10000;}
cur[j].I = -10000;
}
last[0].C = 0; cur[0].D = cur[1].D = cur[2].D = -10000;
last[0].D = last[1].D = last[2].D = -10000;
last[0].I = ((N) ? -gext: -gop-gext);
for (i = 1; i <= ex-x+1; i++) {
wt = &wgts[pro[i+x-1]][0];
e2 = last[0].C;
e1 = -10000;
for (j = 0; j <= ey-y+1; j++) {
t = j+y;
sc = -10000;
if (t < 3) score = -10000;
else score = wt[dnap[t-3]];
if (j < 4) {
if (j == 3) sc = e2;
else if (j == 2) sc = e2-shift;
} else {
e3 = e2; e2 = e1;
e1 = last[j-2].C;
sc = max(max(e1, e3)-shift, e2);
}
sc += score;
sc = max(sc, max(ci=last[j].I, cd = cur[j].D));
cur[j].C = sc;
cur[j+3].D = max(cd, sc-gop)-gext;
cur[j].I = max(ci, sc-gop)-gext;
}
swap(&last, &cur);
}
for (i = 0; i <= ey-y+1; i++) last[i].I = cur[i].I;
if (*row1 != last) swap(row1, row2);
}
static global_down(row1, row2, cur_st, x, y, ex, ey, wgts, dnap, pro, N)
st_ptr *row1, *row2;
int x, y, ex, ey, *cur_st, wgts[][32];
char *dnap, *pro;
int N;
{
int i, j, k, sc, del, *tmp, e, t, e1,e2,e3, ci,cd, s1, s2, s3, *wt;
st_ptr cur, last;
cur = (*row1); last = *row2;
sc = -gop-gext;
for (j = ey-y; j >= 0; j--) {
if ((ey-y+1-j) % 3) {last[j].C = sc; sc-=gext; last[j].I = sc-gop;}
else last[j].I = last[j].C = -10000;
cur[j].I = -10000;
}
last[ey-y+1].C = 0;
cur[ey-y+1].D = cur[ey-y].D = cur[ey-y-1].D = -10000;
last[ey-y+1].D = last[ey-y].D = last[ey-y-1].D = -10000;
if (N) last[ey-y+1].I = -gext; else last[ey-y+1].I = -gop-gext;
for (i = ex-x; i >= 0; i--) {
wt = &wgts[pro[i+x]][0]; e2 = last[ey-y+1].C;
e1 = -10000;
for (j = ey-y+1; j >= 0; j--) {
t = j+y;
s1 = wt[dnap[t-1]];
sc = -10000;
if (t+3 > ey) {
if (t+2==ey) sc = e2+s1;
else if (t+1==ey) sc = e2-shift+s1;
} else {
e3 = e2; e2 = e1;
e1 = last[j+2].C;
sc = max(max(e1, e3)-shift, e2);
}
if (sc < (cd= cur[j].D)) {
sc = cd;
cur[j-3].D = cd-gext;
} else cur[j-3].D =max(cd, sc-gop)-gext;
if (sc < (ci= last[j].I)) {
sc = ci; del = 0;
cur[j].I = ci - gext;
} else cur[j].I = max(sc-gop,ci)-gext;
cur[j].C = sc;
s3 = s2; s2 = s1;
}
swap(&last, &cur);
}
for (i = 0; i <= ey-y+1; i++) last[i].I = cur[i].I;
if (*row1 != last) swap(row1, row2);
}
static init_row(row, ld)
int *row, ld;
{
int i;
for (i = 0; i < ld; i++) row[i] = 0;
}
static init_ROW(row, ld)
st_ptr row;
int ld;
{
int i;
for (i = 0; i < ld; i++) row[i].I = row[i].D = row[i].C = 0;
}
static match_ptr combine(x1, x2, st)
match_ptr x1, x2;
int st;
{
match_ptr x;
if (x1 == NULL) return x2;
for (x = x1; x->next; x = x->next);
x->next = x2;
if (st) {
for (x = x2; x; x = x->next) {
x->j++;
if (x->l == 3 || x->l == 4) break;
}
x->l--;
}
return x1;
}
/*
global use the two upwards and downwards score only linear
space global alignment subroutine to recursively build the
alignment.
*/
match_ptr global(x,y, ex, ey, wgts, dnap, pro, N1, N2)
int x, y, ex, ey, wgts[][32];
char *dnap, *pro;
int N1, N2;
{
int m;
int m1, m2;
match_ptr x1, x2, mm1, mm2;
/*printf("%d %d %d %d\n", x,y, ex, ey);*/
/*
if the space required is limited, we can do a quadratic space
algorithm to find the alignment.
*/
if (ex <= x) {
mm1 = NULL;
for (m = y+3; m <= ey; m+=3) {
x1 = (match_ptr) ckalloc(sizeof(match_node));
x1->l = 5; x1->next = mm1;
if (mm1== NULL) mm2 = x1;
mm1 = x1;
}
if (ex == x) {
if (ey-y % 3 != 0) {
x1 = mm2->next = (match_ptr) ckalloc(sizeof(match_node));
x1->l = ((ey-y) % 3) +1; x1->next = NULL;
} else mm2->l = 4;
}
return mm1;
}
if (ey <= y) {
mm1 = NULL;
for (m = x; m <= ex; m++) {
x1 = (match_ptr) ckalloc(sizeof(match_node));
x1->l = 0; x1->next = mm1; mm1 = x1;
}
return mm1;
}
if (ex -x < SGW1 && ey-y < SGW2)
return small_global(x,y,ex,ey,wgts, dnap, pro,N1,N2);
m = (x+ex)/2;
/*
Do the score only global alignment from row x to row m, m is
the middle row of x and ex. Store the information of row m in
upC, upD, and upI.
*/
global_up(&up, &tp, x, y, m, ey, wgts, dnap, pro,N1);
/*
Do the score only global alignment downwards from row ex
to row m+1, store information of row m+1 in downC downI and downD
*/
global_down(&down, &tp, st_up, m+1, y, ex, ey, wgts, dnap, pro,N2);
/*
Use these information of row m and m+1, to find the crossing
point of the best alignment with the middle row. The crossing
point is given by m1 and m2. Then we recursively call global
itself to compute alignments in two smaller regions found by
the crossing point and combine the two alignments to form a
whole alignment. Return that alignment.
*/
if (find_best(up, down, &m1, &m2, ey-y+1, y)) {
x1 = global(x, y, m, m1, wgts, dnap, pro,N1,0);
x2 = global(m+1, m2, ex, ey, wgts, dnap, pro,0,N2);
if (m1 == m2) x1 = combine(x1,x2,1);
else x1 = combine(x1, x2,0);
} else {
x1 = global(x, y, m-1, m1, wgts, dnap, pro,N1,1);
x2 = global(m+2, m2, ex, ey, wgts, dnap, pro,1,N2);
mm1 = (match_ptr) ckalloc(sizeof(match_node));
mm1->i = m; mm1->l = 0; mm1->j = m1;
mm2 = (match_ptr) ckalloc(sizeof(match_node));
mm2->i = m+1; mm2->l = 0; mm2->j = m1;
mm1->next = mm2; mm2->next = x2;
x1 = combine(x1, mm1, 0);
}
return x1;
}
static find_best(up, down, m1, m2, ld, y)
st_ptr up, down;
int ld, y;
int *m1, *m2;
{
int i, best = -1000, j = 0, s1, s2, s3, s4, st;
up++;
for (i = 1; i < ld; i++) {
s2 = up[i-1].C + down[i].C;
s4 = up[i-1].I + down[i].I + gop;
if (best < s2) {
best = s2; j = i; st = 1;
}
if (best < s4) {
best = s4; j = i; st = 0;
}
}
*m1 = j-1+y;
*m2 = j+y;
return 1;
}
/*
An alignment is represented as a linked list whose element
is of type match_node. Each element represent an edge in the
path of the alignment graph. The fields of match_node are
l --- gives the type of the edge.
i, j --- give the end position.
*/
static match_ptr small_global(x, y, ex, ey, wgts, dnap, pro, N1, N2)
int x, y, ex, ey, wgts[][32];
char *dnap, *pro;
int N1, N2;
{
static int C[SGW1+1][SGW2+1], st[SGW1+1][SGW2+1], D[SGW2+7], I[SGW2+1];
int i, j, e, sc, score, del, k, t, *wt, ci, cd;
int *cI, *cD, *cC, *lC, *cst, e2, e3, e4;
match_ptr mp, first;
/*printf("small_global %d %d %d %d\n", x, y, ex, ey);*/
sc = -gop-gext; C[0][0] = 0;
if (N1) I[0] = -gext; else I[0] = sc;
for (j = 1; j <= ey-y+1; j++) {
if (j % 3== 0) {
C[0][j] = sc; sc -= gext; I[j] = sc-gop;
} else I[j] = C[0][j] = -10000;
st[0][j] = 5;
}
lC = &C[0][0]; cD = D; D[0] = D[1] = D[2] = -10000;
cI = I;
for (i = 1; i <= ex-x+1; i++) {
cC = &C[i][0];
wt = &wgts[pro[i+x-1]][0]; cst = &st[i][0];
for (j = 0; j <=ey-y+1; j++) {
sc = -10000; del = 0;
ci = cI[j];
cd= cD[j];
t = j+y;
if (t < 3) score = -10000;
else score = wt[dnap[t-3]];
if (j >= 4) {
e2 = lC[j-2]-shift; sc = lC[j-3]; e4 = lC[j-4]-shift;
del = 3;
if (e2 > sc) { sc = e2; del = 2;}
if (e4 >= sc) { sc = e4; del = 4;}
} else {
if (j ==3) {sc= lC[0]; del = 3;}
else if (j == 2) {sc = lC[0]-shift; del = 2;}
}
sc = sc+score;
if (sc < ci) {
sc = ci; del = 0;
}
if (sc < cd) {
sc = cd;
del = 5;
}
cC[j] = sc;
sc -= gop;
if (sc < cd) {
del += 10;
cD[j+3] = cd - gext;
} else cD[j+3] = sc -gext;
if (sc < ci) {
del += 20;
cI[j] = ci-gext;
} else cI[j] = sc-gext;
*(cst++) = del;
}
lC = cC;
}
if (N2 && ci +gop > cC[ey-y+1]) st[ex-x+1][ey-y+1] = 0;
first = NULL; e = 1;
for (i = ex+1, j = ey+1; i > x || j > y; i--) {
mp = (match_ptr) ckalloc(sizeof(match_node));
mp->i = i-1;
k = (t=st[i-x][j-y])%10;
mp->j = j-1;
if (e == 5 && (t/10)%2 == 1) k = 5;
if (e == 0 && (t/20)== 1) k = 0;
if (k == 5) { j -= 3; i++; e=5;}
else {j -= k;if (k==0) e= 0; else e = 1;}
mp->l = k;
mp->next = first;
first = mp;
}
/* for (i = 0; i <= ex-x; i++) {
for (j = 0; j <= ey-y; j++)
printf("%d ", C[i][j]);
printf("\n");
}
*/
return first;
}
#define XTERNAL
#include "upam.gbl"
extern display_alig(a, dna, pro,length, ld)
int *a;
char *dna, *pro;
int length, ld;
{
int len = 0, i, j, x, y, lines, k;
static char line1[100], line2[100], line3[100],
tmp[10] = " ", *st;
char *dna1, c1, c2, c3;
dna1 = ckalloc(ld);
for (st = dna, i = 0; i < ld; i++, st++) dna1[i] = aa[*st];
line1[0] = line2[0] = line3[0] = '\0'; x= a[0]; y = a[1]-1;
for (len = 0, j = 2, lines = 0; j < length; j++) {
i = a[j];
/*printf("%d %d %d\n", i, len, b->j);*/
if (i > 0 && i < 5) tmp[i-2] = aa[pro[x++]];
if (i == 5) {
i = 3; tmp[0] = tmp[1] = tmp[2] = '-';
if (a[j+1] == 2) tmp[2] = ' ';
}
if (i > 0) {
strncpy(&line1[len], &dna1[y], i); y+=i;
} else {line1[len] = '-'; i = 1; tmp[0] = aa[pro[x++]];}
strncpy(&line2[len], tmp, i);
for (k = 0; k < i; k++) {
if (tmp[k] != ' ' && tmp[k] != '-') {
if (k == 2) tmp[k] = '\\';
else if (k == 1) tmp[k] = '|';
else tmp[k] = '/';
} else tmp[k] = ' ';
}
if (i == 1) tmp[0] = ' ';
strncpy(&line3[len], tmp, i);
tmp[0] = tmp[1] = tmp[2] = ' ';
len += i;
line1[len] = line2[len] =line3[len] = '\0';
if (len >= WIDTH) {
printf("\n%5d", WIDTH*lines++);
for (k = 10; k <= WIDTH; k+=10)
printf(" . :");
if (k-5 < WIDTH) printf(" .");
c1 = line1[WIDTH]; c2 = line2[WIDTH]; c3 = line3[WIDTH];
line1[WIDTH] = line2[WIDTH] = line3[WIDTH] = '\0';
printf("\n %s\n %s\n %s\n", line1, line3, line2);
line1[WIDTH] = c1; line2[WIDTH] = c2; line3[WIDTH] = c3;
strcpy(line1, &line1[WIDTH]);
strcpy(line2, &line2[WIDTH]);
strcpy(line3, &line3[WIDTH]);
len = len - WIDTH;
}
}
printf("\n%5d", WIDTH*lines);
for (k = 10; k < len; k+=10)
printf(" . :");
if (k-5 < len) printf(" .");
printf("\n %s\n %s\n %s\n", line1, line3, line2);
}
/* alignment store the operation that align the protein and dna sequence.
The code of the number in the array is as follows:
0: delete of an amino acid.
2: frame shift, 2 nucleotides match with an amino acid
3: match an amino acid with a codon
4: the other type of frame shift
5: delete of a codon
Also the first two element of the array stores the starting point
in the protein and dna sequences in the local alignment.
Display looks like where WIDTH is assumed to be divisible by 10.
0 . : . : . : . : . : . :
CCTATGATACTGGGATACTGGAACGTCCGCGGACTGACACACCCGATCCGCATGCTCCTG
P M I L G Y W N V R G L T H P I R M L L
60 . : . : . : . : . : . :
GAATACACAGACTCAAGCTATGATGAGAAGAGATACACCATGGGTGACGCTCCCGACTTT
E Y T D S S Y D E K R Y T M G D A P D F
*/
/* ckalloc - allocate space; check for success */
void *ckalloc(amount)
int amount;
{
char *p;
if ((p = malloc((size_t)amount)) == NULL)
fatal("Ran out of memory.");
return(p);
}
/* fatal - print message and die */
void
fatal(msg)
char *msg;
{
fprintf(stderr, "%s\n", msg);
exit(1);
}