-
Notifications
You must be signed in to change notification settings - Fork 0
/
circularbuffer.cpp
382 lines (305 loc) · 10.1 KB
/
circularbuffer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// by wuwbobo2021 <https://github.com/wuwbobo2021>, <wuwbobo@outlook.com>
// If you have found bugs in this program, please pull an issue, or contact me.
// Licensed under LGPL version 2.1.
#include <simple-cairo-plot/circularbuffer.h>
#include <cstring> //memcpy()
#include <limits> //numeric_limits<float>
using namespace SimpleCairoPlot;
void CircularBuffer::init(unsigned int sz)
{
if (sz == 0)
throw std::invalid_argument("CircularBuffer::init(): invalid buffer size 0.");
this->read_lock_counter = 0;
this->lock(true);
if (this->buf != NULL) {delete[] this->buf; this->buf = NULL;}
if (this->buf_spike != NULL) {delete[] this->buf_spike; this->buf_spike = NULL;}
this->bufsize = sz;
this->buf_spike_size = this->bufsize / 32;
if (this->buf_spike_size < 16) this->buf_spike_size = 16;
bool except_caught = false;
try {
this->buf_spike = new unsigned long int[this->buf_spike_size];
this->buf = new float[this->bufsize];
} catch (std::bad_alloc) {
except_caught = true;
}
if (except_caught || this->buf == NULL || this->buf_spike == NULL) {
if (this->buf_spike) {delete[] this->buf_spike; this->buf_spike = NULL;}
this->unlock(); throw std::bad_alloc();
}
for (unsigned int i = 0; i < this->bufsize; i++)
this->buf[i] = 0;
this->bufend = this->buf + this->bufsize - 1;
this->buf_spike_bufend = this->buf_spike + this->buf_spike_size - 1;
this->unlock();
this->clear(true);
}
CircularBuffer::CircularBuffer() {}
CircularBuffer::CircularBuffer(unsigned int sz)
{
this->init(sz);
}
void CircularBuffer::copy_from(const CircularBuffer& from)
{
this->clear(true);
if (from.cnt == 0) return;
this->lock(true);
unsigned int cnt_cpy = from.cnt; //actual amount of data to be copied
if (cnt_cpy > this->bufsize)
cnt_cpy = this->bufsize;
IndexRange range_cpy(from.count() - cnt_cpy, from.count() - 1);
BufRangeMap map = from.map_from(range_cpy);
memcpy(this->buf, from.buf + map.former.min(), map.former.count()*sizeof(float));
if (map.latter)
memcpy(this->buf + map.former.count(), from.buf + map.latter.min(),
map.latter.count()*sizeof(float));
this->cnt = cnt_cpy;
this->end = this->ptr_inc(this->buf, cnt_cpy);
// copy the spike buffer only when both spike buffers have equal size
if (from.bufsize == this->bufsize) {
this->cnt_overwrite = from.cnt_overwrite + (from.cnt - cnt_cpy);
memcpy(this->buf_spike, from.buf_spike,
this->buf_spike_size*sizeof(unsigned long int));
this->spike_check_ref_min = from.spike_check_ref_min;
this->buf_spike_cnt = from.buf_spike_cnt;
this->buf_spike_end = from.buf_spike_end;
}
this->unlock();
}
CircularBuffer::CircularBuffer(CircularBuffer& from)
{
this->init(from.bufsize);
from.lock();
this->copy_from(from);
from.unlock();
}
CircularBuffer::CircularBuffer(const CircularBuffer& from)
{
this->init(from.bufsize);
this->copy_from(from);
}
CircularBuffer& CircularBuffer::operator=(const CircularBuffer& buf)
{
this->copy_from(buf);
return *this;
}
CircularBuffer::~CircularBuffer()
{
if (this->buf != NULL) delete[] this->buf;
}
void CircularBuffer::clear(bool clear_count_history)
{
this->lock(true);
this->cnt = 0;
if (clear_count_history)
this->cnt_overwrite = 0;
this->end = this->buf;
this->buf[0] = 0;
this->buf_spike_cnt = 0;
this->buf_spike_end = this->buf_spike;
this->spike_check_av = 0;
this->last_min_max_scan = MinMaxScanInfo();
this->last_av_calc = AvCalcInfo();
this->unlock();
}
void CircularBuffer::erase()
{
if (this->buf == NULL) return;
this->clear(true);
this->lock();
for (unsigned int i = 0; i < this->bufsize; i++)
this->buf[i] = 0;
this->unlock();
}
void CircularBuffer::load(const float* data, unsigned int cnt, bool spike_check)
{
if (data == NULL || cnt == 0) return;
this->lock(true);
unsigned int cnt_load = cnt; //actual amount of data to be read and loaded
if (cnt_load > this->bufsize)
cnt_load = this->bufsize;
const float* pf, * pf_end; //pointer of data to be read
pf_end = data + cnt - 1;
pf = pf_end - cnt_load + 1;
if (spike_check) {
for (pf; pf <= pf_end; pf++)
this->push(*pf, true, false);
this->cnt_overwrite += cnt - cnt_load;
} else {
BufRangeMap map = this->map_from(IndexRange(0, cnt_load - 1));
memcpy(this->buf + map.former.min(), pf, map.former.count()*sizeof(float));
if (map.latter)
memcpy(this->buf + map.latter.min(), pf + map.former.count(),
map.latter.count()*sizeof(float));
unsigned long int tmp_cnt = this->cnt + cnt;
if (tmp_cnt > this->bufsize) {
this->cnt_overwrite += tmp_cnt - this->bufsize;
this->cnt = this->bufsize;
} else
this->cnt = tmp_cnt;
}
this->unlock();
}
unsigned int CircularBuffer::get_spikes(IndexRange range, unsigned int* buf_out)
{
if (this->buf_spike_cnt == 0) return 0;
this->lock();
range = this->range().cut_range(range);
range = this->range_to_abs(range);
unsigned int cnt_sp = 0;
unsigned int* p = buf_out; unsigned long int cur;
for (unsigned int i = 0; i < this->buf_spike_cnt; i++) {
cur = this->buf_spike_item(i);
if (cur < range.min()) continue;
if (cur > range.max()) break;
*p = this->index_to_rel(this->buf_spike_item(i));
cnt_sp++; p++;
}
this->unlock();
return cnt_sp;
}
unsigned int CircularBuffer::get_spikes(IndexRange range, unsigned long int* buf_out)
{
if (this->buf_spike_cnt == 0) return 0;
this->lock();
range = this->range().cut_range(range);
range = this->range_to_abs(range);
unsigned int cnt_sp = 0; unsigned long int cur;
for (unsigned int i = 0; i < this->buf_spike_cnt; i++) {
cur = this->buf_spike_item(i);
if (cur < range.min()) continue;
if (cur > range.max()) break;
*buf_out = this->buf_spike_item(i);
cnt_sp++; buf_out++;
}
this->unlock();
return cnt_sp;
}
ValueRange CircularBuffer::get_value_range(IndexRange range, unsigned int chk_step)
{
using std::numeric_limits;
if (this->cnt == 0) return ValueRange(0, 0);
// indexes used during the calculation are "absolute"
range = this->range().cut_range(range);
range = this->range_to_abs(range);
if (chk_step == 0 || chk_step >= this->cnt / 2) chk_step = 1;
MinMaxScanInfo last;
this->lock_info.lock();
last = this->last_min_max_scan;
this->lock_info.unlock();
if (last.range_i_min_max_scan.contain(range) && range.contain(last.range_i_min_max))
return last.range_min_max;
this->lock();
unsigned long int il = range.min(), ir = range.max();
unsigned long int imin = il, imax = il;
float min = numeric_limits<float>::max(), max = numeric_limits<float>::lowest();
// optimized for scrolling right, but not for scrolling left
if (range.intersected_not_left_of(last.range_i_min_max_scan)
&& range.contain(last.range_i_min_max))
{
imin = last.range_i_min_max.min(); min = last.range_min_max.min();
imax = last.range_i_min_max.max(); max = last.range_min_max.max();
il = last.range_i_min_max_scan.max();
}
// check for spikes
unsigned long int i; float cur;
if (chk_step > 1 && this->buf_spike_cnt > 0) {
for (unsigned int i_sp = 0; i_sp < this->buf_spike_cnt; i_sp++) {
i = this->buf_spike_item(i_sp);
if (i < il) continue; if (i > ir) break;
cur = this->abs_index_item(i);
if (cur < min) {min = cur; imin = i;}
if (cur > max) {max = cur; imax = i;}
}
}
float* p = this->item_addr(this->index_to_rel(il));
this->unlock();
for (i = il; i <= ir; i += chk_step) {
cur = *p;
if (cur < min) {min = cur; imin = i;}
if (cur > max) {max = cur; imax = i;}
p = this->ptr_inc(p, chk_step);
}
last.range_i_min_max_scan = range;
last.range_i_min_max.set(imin, imax);
last.range_min_max.set(min, max);
this->lock_info.lock();
this->last_min_max_scan = last;
this->lock_info.unlock();
return last.range_min_max;
}
float CircularBuffer::get_average(IndexRange range, unsigned int chk_step)
{
if (this->cnt == 0) return 0;
// indexes used during the calculation are "absolute"
range = this->range().cut_range(range);
range = this->range_to_abs(range);
if (range == this->last_av_calc.range_i_av_val)
return this->last_av_calc.av_val;
AvCalcInfo last;
this->lock_info.lock();
last = this->last_av_calc;
this->lock_info.unlock();
this->lock();
bool flag_optimize = false, flag_add, flag_subtract;
unsigned long int il_add, ir_add, il_sub, ir_sub; //index bounds
unsigned int cnt = 0; float sum = 0;
// optimized for scrolling right, but not for scrolling left
if (last.range_i_av_val.min() > this->cnt_overwrite
&& range.intersected_not_left_of(last.range_i_av_val))
{
flag_add = (range.max() > last.range_i_av_val.max());
flag_subtract = (range.min() > last.range_i_av_val.min());
unsigned int cnt_operate = 0;
if (flag_add) {
il_add = last.range_i_av_val.max() + 1; ir_add = range.max();
cnt_operate += ir_add - il_add + 1;
}
if (flag_subtract) {
il_sub = last.range_i_av_val.min(); ir_sub = range.min() - 1;
cnt_operate += ir_sub - il_sub + 1;
}
flag_optimize = (cnt_operate < range.count());
}
if (! flag_optimize) {
flag_add = true; flag_subtract = false;
il_add = range.min(); ir_add = range.max();
}
if (chk_step == 0 || chk_step >= (ir_add - il_add + 1) / 32) {
chk_step = (ir_add - il_add + 1) / 32; if (chk_step == 0) chk_step = 1;
}
if (flag_optimize) {
cnt = last.range_i_av_val.count_by_step(chk_step);
sum = cnt * last.av_val;
}
float* p_add, * p_sub, * p_add_end, * p_sub_end;
if (flag_add) {
unsigned int add_cnt = IndexRange(il_add, ir_add).count_by_step(chk_step);
p_add = this->item_addr(this->index_to_rel(il_add));
p_add_end = this->ptr_inc(p_add, (add_cnt - 1)*chk_step);
cnt += add_cnt;
}
if (flag_subtract) {
unsigned int sub_cnt = IndexRange(il_sub, ir_sub).count_by_step(chk_step);
p_sub = this->item_addr(this->index_to_rel(il_sub));
p_sub_end = this->ptr_inc(p_sub, (sub_cnt - 1)*chk_step);
cnt -= sub_cnt;
}
this->unlock();
if (flag_subtract) while (true) {
sum -= *p_sub;
if (p_sub == p_sub_end) break;
p_sub = this->ptr_inc(p_sub, chk_step);
}
if (flag_add) while (true) {
sum += *p_add;
if (p_add == p_add_end) break;
p_add = this->ptr_inc(p_add, chk_step);
}
last.av_val = sum / cnt;
last.range_i_av_val = range;
this->lock_info.lock();
this->last_av_calc = last;
this->lock_info.unlock();
return last.av_val;
}