-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathvgg_preprocessing.py
225 lines (173 loc) · 7.34 KB
/
vgg_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides utilities to preprocess images.
The preprocessing steps for VGG were introduced in the following technical
report:
Very Deep Convolutional Networks For Large-Scale Image Recognition
Karen Simonyan and Andrew Zisserman
arXiv technical report, 2015
PDF: http://arxiv.org/pdf/1409.1556.pdf
ILSVRC 2014 Slides: http://www.robots.ox.ac.uk/~karen/pdf/ILSVRC_2014.pdf
CC-BY-4.0
More information can be obtained from the VGG website:
www.robots.ox.ac.uk/~vgg/research/very_deep/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
_R_MEAN = 123.68
_G_MEAN = 116.78
_B_MEAN = 103.94
_RESIZE_SIDE_MIN = 256
_RESIZE_SIDE_MAX = 512
def _get_h_w(image):
"""Convenience for grabbing the height and width of an image.
"""
shape = tf.shape(image)
return shape[0], shape[1]
def _random_crop_and_flip(image, crop_height, crop_width):
"""Crops the given image to a random part of the image, and randomly flips.
Args:
image: a 3-D image tensor
crop_height: the new height.
crop_width: the new width.
Returns:
3-D tensor with cropped image.
"""
height, width = _get_h_w(image)
# Create a random bounding box.
# Use tf.random_uniform and not numpy.random.rand as doing the former would
# generate random numbers at graph eval time, unlike the latter which
# generates random numbers at graph definition time.
total_crop_height = (height - crop_height)
crop_top = tf.random_uniform([], maxval=total_crop_height + 1, dtype=tf.int32)
total_crop_width = (width - crop_width)
crop_left = tf.random_uniform([], maxval=total_crop_width + 1, dtype=tf.int32)
cropped = tf.slice(
image, [crop_top, crop_left, 0], [crop_height, crop_width, -1])
cropped = tf.image.random_flip_left_right(cropped)
return cropped
def _central_crop(image, crop_height, crop_width):
"""Performs central crops of the given image list.
Args:
image: a 3-D image tensor
crop_height: the height of the image following the crop.
crop_width: the width of the image following the crop.
Returns:
3-D tensor with cropped image.
"""
height, width = _get_h_w(image)
total_crop_height = (height - crop_height)
crop_top = total_crop_height // 2
total_crop_width = (width - crop_width)
crop_left = total_crop_width // 2
return tf.slice(
image, [crop_top, crop_left, 0], [crop_height, crop_width, -1])
def _mean_image_subtraction(image, means):
"""Subtracts the given means from each image channel.
For example:
means = [123.68, 116.779, 103.939]
image = _mean_image_subtraction(image, means)
Note that the rank of `image` must be known.
Args:
image: a tensor of size [height, width, C].
means: a C-vector of values to subtract from each channel.
Returns:
the centered image.
Raises:
ValueError: If the rank of `image` is unknown, if `image` has a rank other
than three or if the number of channels in `image` doesn't match the
number of values in `means`.
"""
if image.get_shape().ndims != 3:
raise ValueError('Input must be of size [height, width, C>0]')
num_channels = image.get_shape().as_list()[-1]
if len(means) != num_channels:
raise ValueError('len(means) must match the number of channels')
# We have a 1-D tensor of means; convert to 3-D.
means = tf.expand_dims(tf.expand_dims(means, 0), 0)
return image - means
def _smallest_size_at_least(height, width, smallest_side):
"""Computes new shape with the smallest side equal to `smallest_side`.
Computes new shape with the smallest side equal to `smallest_side` while
preserving the original aspect ratio.
Args:
height: an int32 scalar tensor indicating the current height.
width: an int32 scalar tensor indicating the current width.
smallest_side: A python integer or scalar `Tensor` indicating the size of
the smallest side after resize.
Returns:
new_height: an int32 scalar tensor indicating the new height.
new_width: an int32 scalar tensor indicating the new width.
"""
smallest_side = tf.cast(smallest_side, tf.float32)
height = tf.cast(height, tf.float32)
width = tf.cast(width, tf.float32)
smaller_dim = tf.minimum(height, width)
scale_ratio = smallest_side / smaller_dim
new_height = tf.cast(height * scale_ratio, tf.int32)
new_width = tf.cast(width * scale_ratio, tf.int32)
return new_height, new_width
def _aspect_preserving_resize(image, smallest_side):
"""Resize images preserving the original aspect ratio.
Args:
image: A 3-D image `Tensor`.
smallest_side: A python integer or scalar `Tensor` indicating the size of
the smallest side after resize.
Returns:
resized_image: A 3-D tensor containing the resized image.
"""
smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)
height, width = _get_h_w(image)
new_height, new_width = _smallest_size_at_least(height, width, smallest_side)
resized_image = tf.image.resize_images(
image, [new_height, new_width], method=tf.image.ResizeMethod.BILINEAR,
align_corners=False)
return resized_image
def preprocess_image(image, output_height, output_width, is_training=False,
resize_side_min=_RESIZE_SIDE_MIN,
resize_side_max=_RESIZE_SIDE_MAX):
"""Preprocesses the given image.
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
is_training: `True` if we're preprocessing the image for training and
`False` otherwise.
resize_side_min: The lower bound for the smallest side of the image for
aspect-preserving resizing. If `is_training` is `False`, then this value
is used for rescaling.
resize_side_max: The upper bound for the smallest side of the image for
aspect-preserving resizing. If `is_training` is `False`, this value is
ignored. Otherwise, the resize side is sampled from
[resize_size_min, resize_size_max].
Returns:
A preprocessed image.
"""
if is_training:
# For training, we want to randomize some of the distortions.
resize_side = tf.random_uniform(
[], minval=resize_side_min, maxval=resize_side_max + 1, dtype=tf.int32)
crop_fn = _random_crop_and_flip
else:
resize_side = resize_side_min
crop_fn = _central_crop
num_channels = image.get_shape().as_list()[-1]
image = _aspect_preserving_resize(image, resize_side)
image = crop_fn(image, output_height, output_width)
image.set_shape([output_height, output_width, num_channels])
image = tf.cast(image, tf.float32)
return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN])