-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
303 lines (253 loc) · 10.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
from torch.nn.modules.conv import Conv2d
from torchvision import models
from torch.autograd import variable
from einops import rearrange
class BaseNet(nn.Module):
def __init__(self):
super(BaseNet, self).__init__()
self.backbone1 = make_layers([64, 64, 'M', 128, 128])
self.backbone2 = make_layers(['M', 256, 256, 256], in_channels=128)
self.backbone3 = make_layers(['M', 512, 512, 512], in_channels=256)
def forward(self, x):
x1 = self.backbone1(x)
x2 = self.backbone2(x1)
x3 = self.backbone3(x2)
return x1, x2, x3
class BasicConv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, bn=False):
super(BasicConv2d, self).__init__()
self.use_bn = bn
if self.use_bn:
self.bn = nn.BatchNorm2d(out_planes)
self.conv = nn.Conv2d(in_planes, out_planes,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=False)
self.relu = nn.ReLU()
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(std=0.01)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def forward(self, x):
x = self.conv(x)
if self.use_bn:
x = self.bn(x)
x = self.relu(x)
return x
class PPM(nn.Module):
# pyramid pooling module
def __init__(self, channel):
super(PPM, self).__init__()
self.scales = [1, 2, 4, 8]
self.poolings = [nn.AdaptiveAvgPool2d((s, s)) for s in self.scales]
self.convs = nn.ModuleList([BasicConv2d(channel, channel, kernel_size=3, padding=1)
for i in range(len(self.scales))])
self.cat = BasicConv2d((len(self.scales)+1)*channel, channel, 1)
def forward(self, x):
pool_x = []
for i, pooling in enumerate(self.poolings):
pool_x.append(self.convs[i](pooling(x)))
inp_x = []
for i in range(len(self.scales)):
inp_x.append(F.interpolate(pool_x[i], size=x.size()[2:], mode='bilinear', align_corners=False))
inp_x.append(x)
return self.cat(torch.cat(inp_x, dim=1))
class WCA(nn.Module):
# weighted channel-wise attention
def __init__(self, channel):
super(WCA, self).__init__()
self.fc = nn.Sequential(
BasicConv2d(channel, channel//2, 1),
nn.Conv2d(channel//2, channel, 1)
)
def forward(self, x):
b, c, _, _ = x.shape
weight = x.reshape((b, c, -1))
weight = torch.mean(weight * F.softmax(weight, dim=-1), dim=-1)
weight = weight.unsqueeze(-1).unsqueeze(-1)
weight = F.softmax(self.fc(weight), dim=1)
x = x *weight
return x
class Aggregation(nn.Module):
def __init__(self, channel):
super(Aggregation, self).__init__()
self.channel = channel
self.t1 = BasicConv2d(128, channel, 1)
self.t2 = BasicConv2d(256, channel, 1)
self.t3 = BasicConv2d(512, channel, 1)
self.convs = nn.ModuleList([BasicConv2d(channel, channel, 1) for i in range(2)])
self.conv_cats = nn.ModuleList([nn.Sequential(
# WCA(2*channel),
BasicConv2d(2*channel, channel, 1)
) for i in range(2)])
def forward(self, x1, x2, x3):
x1 = self.t1(x1)
x2 = self.t2(x2)
x3 = self.t3(x3)
x1 = self.convs[0](F.interpolate(x1, size=x3.size()[2:], mode='bilinear', align_corners=True))
x2 = self.convs[1](F.interpolate(x2, size=x3.size()[2:], mode='bilinear', align_corners=True))
x2 = self.conv_cats[0](torch.cat((x2, x3), 1))
x1 = self.conv_cats[1](torch.cat((x1, x2), 1))
return x1
class MGL(nn.Module):
# multi-graph layer
def __init__(self, channel, dilation=1):
super(MGL, self).__init__()
self.fold = nn.Unfold(kernel_size=3, padding=dilation, dilation=dilation)
self.conv = nn.ModuleList([BasicConv2d(channel, channel, 1) for _ in range(3)])
def forward(self, x):
n, t, c, h, w = x.shape
x = x.view(n*t, c, h, w)
x1 = self.conv[0](x)
x2 = self.conv[1](x)
x3 = self.conv[2](x)
x1 = rearrange(self.fold(x1), '(n t) (c k2) hw -> n hw t k2 c', t=t, c=c) # n, hw, t, kk, c
x1_var, x1_mean = torch.var_mean(x1, dim=3, unbiased=True) # n, hw, t, c
x1 = rearrange(x1, 'n hw t k2 c -> n hw (t k2) c') # n, hw, tkk, c
x2 = rearrange(self.fold(x2), '(n t) (c k2) hw -> n hw c t k2', t=t, c=c) # n, hw, c, t, kk
x2_var, x2_mean = torch.var_mean(x2, dim=4, unbiased=True) # n, hw, c, t
x2 = rearrange(x2, 'n hw c t k2 -> n hw c (t k2)') # n, hw, c, tkk
score1 = F.softmax(torch.matmul(x1, x2), dim=-1) # n, hw, tkk, tkk
score2 = F.softmax(torch.matmul(x1_var, x2_var), dim=-1) # n, hw, t, t
score3 = F.softmax(torch.matmul(x1_mean, x2_mean), dim=-1) # n, hw, t, t
x3 = rearrange(self.fold(x3), '(n t) (c k2) hw -> n hw t (k2 c)', t=t, c=c) # n, hw, t, kkc
x4 = torch.matmul(score3, x3) + torch.matmul(score2, x3) # n, hw, t, kkc
x4 = rearrange(x4, 'n hw t (k2 c) -> n hw t k2 c', c=c) # n, hw, t, kk, c
x3 = rearrange(x3, 'n hw t (k2 c) -> n hw (t k2) c', c=c) # n, hw, tkk, c
x5 = torch.matmul(score1, x3) # n, hw, tkk, c
x5 = rearrange(x5, 'n hw (t k2) c -> n hw t k2 c', t=t) # n, hw, t, kk, c
x6 = x5 + x4
kk = x6.shape[3]
center = x6[:, :, :, kk//2, :].unsqueeze(-1) # n, hw, t, c, 1
score4 = F.softmax(torch.matmul(x6, center), dim=-2) # n, hw, t, kk, 1
x = torch.sum(x6*score4, dim=-2) # n, hw, t, c
x = rearrange(x, 'n (h w) t c -> n t c h w', h=h)
return x
class PGM(nn.Module):
# pyramid graph module
def __init__(self, channel, num=3):
super(PGM, self).__init__()
self.pool = nn.ModuleList([nn.AvgPool2d(kernel_size=2**i) for i in range(num)])
self.conv = nn.ModuleList([BasicConv2d(channel, channel, 3, padding=1) for _ in range(num)])
self.stgm = nn.ModuleList([MGL(channel) for i in range(num)])
self.conv_cat = nn.Sequential(
WCA(num*channel),
BasicConv2d(num*channel, channel, 1),
BasicConv2d(channel, channel, 3, padding=1)
)
def forward(self, x):
n, t, c, h, w = x.shape
x = x.view(n*t, c, h, w)
xs = []
for pool, stgm, conv in zip(self.pool, self.stgm, self.conv):
y = pool(x)
_, _, h1, w1 = y.shape
y = y.view(n, t, c, h1, w1)
y = stgm(y)
y = y.view(n*t, c, h1, w1)
if h != h1:
y = F.interpolate(y, size=(h, w), mode='bilinear', align_corners=False)
y = conv(y)
xs.append(y)
x = self.conv_cat(torch.cat(xs, 1))
x = x.view(n, t, c, h, w)
return x
class STGN(nn.Module):
def __init__(self, args):
super(STGN, self).__init__()
channel = args['channel']
block_num = args['block_num']
self.agg = args['agg']
self.backbone = BaseNet()
if self.agg:
self.aggregation = Aggregation(channel)
else:
self.aggregation = nn.Sequential(
nn.Conv2d(512, channel, 1),
nn.BatchNorm2d(channel),
nn.ReLU()
)
self.pgm = nn.ModuleList([PGM(channel) for _ in range(block_num)])
self.conv_cat = nn.ModuleList([nn.Sequential(
BasicConv2d((i+1)*channel, channel, 1),
BasicConv2d(channel, channel, 3, padding=1)
) for i in range(1, block_num+1)])
self.out = nn.Sequential(
BasicConv2d(channel, channel, 3, padding=1),
nn.Dropout2d(0.1),
nn.Conv2d(channel, 1, 1)
)
if self.training:
self._initialize_weights()
def forward(self, x):
N, T, C, H, W = x.shape
x = x.view(N * T, C, H, W)
x1, x2, x3 = self.backbone(x)
if self.agg:
x = self.aggregation(x1, x2, x3)
else:
x = self.aggregation(x3)
_, c, h, w = x.shape
x = x.view(N, T, c, h, w)
xs = []
xs.append(x)
for i, pgm in enumerate(self.pgm):
x = pgm(x)
xs.append(x)
x = torch.cat(xs, dim=2)
x = x.view(N*T, -1, h, w)
x = self.conv_cat[i](x)
x = x.view(N, T, c, h, w)
x = x.view(N*T, c, h, w)
x = self.out(x)
x = x.view(N, T, -1, h, w)
count = x.sum(dim=(2, 3, 4))
return x, count
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, std=0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
model = models.vgg16(True)
# model.load_state_dict(
# torch.load('/userhome/code/pretrain/vgg16-397923af.pth'))
my_models = self.backbone.state_dict()
pre_models = model.state_dict()
count = 0
for layer_name, value in my_models.items():
prelayer_name = list(pre_models.keys())[count]
pre_weights = pre_models[prelayer_name]
my_models[layer_name] = pre_weights
count += 1
self.backbone.load_state_dict(my_models)
print('Load pre-trained model.')
def make_layers(cfg, in_channels=3, batch_norm=False, dilation=False):
if dilation:
d_rate = 2
else:
d_rate = 1
layers = []
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels,
v,
kernel_size=3,
padding=d_rate,
dilation=d_rate)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)