forked from DataXujing/TensorRT-DETR
-
Notifications
You must be signed in to change notification settings - Fork 1
/
trt_int8_quant.py
123 lines (100 loc) · 5.14 KB
/
trt_int8_quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ~~~Medcare AI Lab~~~
import os
import glob
import cv2
from PIL import Image
import numpy as np
import argparse
import torchvision.transforms as T
from trt_util.common import build_engine_onnx_v2
from trt_util.calibrator import Calibrator
transform = T.Compose([
T.Resize((800,800)), # PIL.Image.BILINEAR
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def preprocess(img_pil):
img = transform(img_pil).cpu().numpy()
return img
# def preprocess(img_pil):
# img = img_pil.resize((800, 800),Image.BILINEAR)
# img = np.array(img).astype(np.float32) / 255.0
# img = img.transpose(2,0,1)
# # print(img.shape)
# img = (img - np.array([ [[0.485]], [[0.456]], [[0.406]] ]))/np.array([ [[0.229]], [[0.224]], [[0.225]] ])
# # img = img.transpose(1,2,0)
# # img = np.expand_dims(img, axis=0)
# img = np.ascontiguousarray(img)
# img = np.array(img).astype(np.float32)
# print(img.shape)
# return img
class DataLoader:
def __init__(self,calib_img_dir="./calib_train_image",batch=1,batch_size=32):
self.index = 0
self.length = batch
self.batch_size = batch_size
self.calib_img_dir = calib_img_dir
# self.img_list = [i.strip() for i in open('calib.txt').readlines()]
self.img_list = glob.glob(os.path.join(self.calib_img_dir, "*.jpg"))
print(f'[INFO] found all {len(self.img_list)} images to calib.')
assert len(self.img_list) > self.batch_size * self.length, '[Error] {} must contains more than {} images to calib'.format(self.calib_img_dir,self.batch_size * self.length)
self.calibration_data = np.zeros((self.batch_size,3,800,800), dtype=np.float32)
def reset(self):
self.index = 0
def next_batch(self):
if self.index < self.length:
for i in range(self.batch_size):
assert os.path.exists(self.img_list[i + self.index * self.batch_size]), '[Error] Batch not found!!'
# data preprocess
img = Image.open(self.img_list[i + self.index * self.batch_size])
# img = cv2.imread(self.img_list[i + self.index * self.batch_size])
img = preprocess(img)
# self.calibration_data[i] = np.ones((3,800,800), dtype=np.float32)
self.calibration_data[i] = img
self.index += 1
return np.ascontiguousarray(self.calibration_data, dtype=np.float32)
else:
return np.array([])
def __len__(self):
return self.length
def main(onnx_model_path,engine_model_path,calib_img_dir,calibration_table,fp16,int8,batch,batch_size):
fp16_mode = fp16
int8_mode = int8
# calibration
calibration_stream = DataLoader(calib_img_dir=calib_img_dir,batch=batch,batch_size=batch_size)
engine_model_path = engine_model_path
# 校准产生校准表,但是我们并没有生成校准表!
engine_fixed = build_engine_onnx_v2(onnx_model_path, engine_model_path, fp16_mode=fp16_mode,
int8_mode=int8_mode,max_batch_size=batch_size, calibration_stream=calibration_stream,
calibration_table_path=calibration_table, save_engine=True)
assert engine_fixed, '[Error] Broken engine_fixed'
print('[INFO] ====> onnx to tensorrt completed !\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='TensorRT INT8 Quant.')
parser.add_argument('--onnx_model_path', type= str , default='./detr_sim.onnx', help='ONNX Model Path')
parser.add_argument('--engine_model_path', type= str , default='./detr_int8.plan', help='TensorRT Engine File')
parser.add_argument('--calib_img_dir', type= str , default='./calib_train_image', help='Calib Image Dir')
parser.add_argument('--calibration_table', type=str,default="./detr_calibration.cache", help='Calibration Table')
parser.add_argument('--batch', type=int,default=958, help='Number of Batch: [total_image/batch_size]') # 30660/batch_size
parser.add_argument('--batch_size', type=int,default=32, help='Batch Size')
parser.add_argument('--fp16', action="store_true", help='Open FP16 Mode')
parser.add_argument('--int8', action="store_true", help='Open INT8 Mode')
args = parser.parse_args()
main(args.onnx_model_path,args.engine_model_path,args.calib_img_dir,args.calibration_table,
args.fp16,args.int8,args.batch,args.batch_size)
# python3 trt_int8_quant.py --onnx_model_path ./detr_sim.onnx --engine_model_path ./detr_int8.plan --calib_img_dir ./calib_train_image --calibration_table ./detr_calibration.cache --batch 1 --int8