-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_integrate.py
323 lines (266 loc) · 14.1 KB
/
run_integrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import time, math, os, sys, random
import cv2 as cv
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
from torch.autograd import Variable
import argparse
from utils import *
from network_integrate import *
from tensorboardX import SummaryWriter
def main(args):
eps = 1.0/255.0
if args.integral:
if args.adding_exposure:
exp_name = 'scaling_wIntegral_wExposure'
else:
exp_name = 'scaling_wIntegrate_woExposure'
else:
if args.adding_exposure:
exp_name = 'scaling_woIntegrate_wExposure'
else:
exp_name = 'scaling_woIntegrate_woExposure'
# exp_name = 'placeholder'
print(exp_name)
writer = SummaryWriter(f'logs/{exp_name}/')
log_dir = os.path.join(args.output_dir, "logs")
im_dir = os.path.join(args.output_dir, "im")
data_dir_hdr_train = os.path.join(args.data_dir, "hdr160320_train")
data_dir_ldr_train = os.path.join(args.data_dir, "ldr160320_train")
if args.diff_domain:
# training and validation/testing in different scenes.
data_dir_hdr_valid = os.path.join(args.data_dir, "hdr160320_valid_diff")
data_dir_ldr_valid = os.path.join(args.data_dir, "ldr160320_valid_diff")
else:
# training and validation/testing in the same scene.
data_dir_hdr_valid = os.path.join(args.data_dir, "hdr160320_valid_same")
data_dir_ldr_valid = os.path.join(args.data_dir, "ldr160320_valid_same")
#=== Localize training data ===================================================
# Get names of all images in the training path
if args.diff_domain:
frames_train = [name for name in sorted(os.listdir(data_dir_hdr_train)) if os.path.isfile(os.path.join(data_dir_hdr_train, name))]
frames_valid = [name for name in sorted(os.listdir(data_dir_hdr_valid)) if os.path.isfile(os.path.join(data_dir_hdr_valid, name))]
else:
frame = [name for name in sorted(os.listdir(data_dir_hdr)) if os.path.isfile(os.path.join(data_dir_hdr, name))]
frames = frames[:3157] # the rest are for testing
# Split data into training/validation sets
splitPos = len(frames) - 157
frames_train, frames_valid = np.split(frames, [splitPos])
# Number of steps per epoch depends on the number of training images
training_samples = len(frames_train)
validation_samples = len(frames_valid)
print("\n\nData to be used:")
print("\t%d training HDRs" % training_samples)
print("\t%d validation HDRs\n" % validation_samples)
train_ldr_paths = []
train_hdr_paths = []
train_exposure = []
train_label = []
# train_storeid = []
brackets = list(range(50,1050,50))
for filename in frames_train:
filename = filename.strip()
namelist = filename.split('_')
for bb in brackets:
# train_storeid.append(namelist[1])
train_hdr_paths.append(f'{data_dir_hdr}/{filename}')
ldr_name = f'{filename[:-4]}_{bb}.png'
train_ldr_paths.append(f'{data_dir_ldr}/{ldr_name}')
# bb = random.choice(brackets)
train_exposure.append(bb)
train_label.append(float(namelist[3][:-4]))
valid_ldr_paths = []
valid_hdr_paths = []
valid_exposure = []
valid_label = []
# valid_storeid = []
for filename in frames_valid:
filename = filename.strip()
namelist = filename.split('_')
for bb in brackets:
# valid_storeid.append(namelist[1])
valid_hdr_paths.append(f'{data_dir_hdr}/{filename}')
ldr_name = f'{filename[:-4]}_{bb}.png'
valid_ldr_paths.append(f'{data_dir_ldr}/{ldr_name}')
# bb = random.choice(brackets)
valid_exposure.append(bb)
valid_label.append(float(namelist[3][:-4]))
train_dataset = LDR2HDR2Illuminance(train_ldr_paths, train_hdr_paths, train_exposure, train_label, args)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=True)
valid_dataset = LDR2HDR2Illuminance(valid_ldr_paths, valid_hdr_paths, valid_exposure, valid_label, args)
valid_dataloader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=True)
# Network
if args.restore:
state = torch.load(f'checkpoint/{exp_name}-best-model.pth')
net = state['net']
cur_epoch = state['epoch']
integral = Integral(args).cuda()
else:
net = Net(args, pretrain=False).cuda()
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
cur_epoch = 0
integral = Integral(args).cuda()
# s2cnn = S2ConvNet_deep().cuda()
# img = cv.imread('dataset/hdr/0706_126_0_1330.hdr',-1)[:,:,::-1]*255.0
# img = cv.resize(img, (320,160), interpolation=cv.INTER_CUBIC)
# img = img.transpose(2,0,1) / 255.0
# img = torch.Tensor(img).cuda()
# out1 = s2cnn.projection(img.unsqueeze(0))
# import matplotlib.pyplot as plt
# plt.imsave('out_new.png', out1.squeeze(0).squeeze(0).cpu().numpy())
# torch.distributed.init_process_group(backend="nccl")
# net = torch.nn.parallel.DistributedDataParallel(net)
# if args.hdr:
# net_hdr = HDR_net().cuda()
# if args.reg:
# net_reg = S2ConvNet_deep().cuda()
# else:
# net_reg = torch.load('best-model.pt')
criterion_hdr = nn.MSELoss().cuda()
criterion_reg = nn.MSELoss().cuda()
# Optimizer
# optim_hdr = torch.optim.Adam(net_hdr.parameters(), lr=args.lr_hdr)
# scheduler_hdr = torch.optim.lr_scheduler.StepLR(optim_hdr, step_size=int(steps_per_epoch), gamma=0.9)
# optim_reg = torch.optim.Adam(net_reg.parameters(), lr=args.lr_reg)
total_start_time = time.time()
for epoch in range(args.num_epochs):
if epoch <= 50:
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
elif epoch <= 80:
optim = torch.optim.Adam(net.parameters(), lr=args.lr/10.)
else:
optim = torch.optim.Adam(net.parameters(), lr=args.lr/100.)
train_loss = 0
train_loss_reg = 0
train_loss_hdr = 0
train_count = 0
train_correct_025 = 0
train_correct_010 = 0
start_time = time.time()
for curr_iter, batch_data in enumerate(train_dataloader):
# Turn exposure into one-hot vector, dim 20
ldr = batch_data['ldr'].cuda()
hdr = batch_data['hdr'].cuda()
exposure = torch.LongTensor(batch_data['exposure']).reshape(ldr.shape[0],1)
exposure = torch.zeros(args.batch_size,20).scatter_(1,exposure/50-1,1)
label = batch_data['label'].cuda() / 1000.0
exposure = exposure.cuda()
net.train()
optim.zero_grad()
# integral_result = integral(hdr)
# judge = (abs(integral_result-label) / label) <= 0.25
hdr_pred, label_pred = net(ldr, exposure)
loss_hdr = criterion_hdr(torch.log(hdr_pred+eps), torch.log(hdr+eps))
# loss_hdr = 0.8*criterion_hdr(torch.log(hdr_pred[judge,:,:,:]+eps), torch.log(hdr[judge,:,:,:]+eps)) + 0.2*criterion_hdr(torch.log(hdr_pred+eps), torch.log(hdr+eps))
train_loss_hdr += loss_hdr.item()
label_pred = label_pred.squeeze()
loss_reg = criterion_reg(label_pred, label.float())
train_loss_reg += loss_reg.item()
if args.integral:
loss = loss_hdr + loss_reg
else:
loss = loss_hdr
loss.backward()
optim.step()
train_loss += loss.item()
train_count += ldr.shape[0]
train_correct_025 += ( (abs(label_pred-label) / label) <= 0.25 ).sum().item()
train_correct_010 += ( (abs(label_pred-label) / label) <= 0.10 ).sum().item()
if curr_iter % 100 == 0:
print(curr_iter, loss.item(), loss_hdr.item(), loss_reg.item())
print('time: ', time.time() - start_time)
writer.add_scalar('train_loss', train_loss / train_count, epoch)
writer.add_scalar('train_hdr_loss', train_loss_hdr / train_count, epoch)
writer.add_scalar('train_reg_loss', train_loss_reg / train_count, epoch)
writer.add_scalar('train_accuracy_25%', train_correct_025 / train_count, epoch)
writer.add_scalar('train_accuracy_10%', train_correct_010 / train_count, epoch)
print('Epoch [{0}/{1}]] Train: total loss: {2:.2f} hdr loss: {3:.2f} reg loss: {4:.2f} 25%Accuracy {5:.2f} 10%Accuracy {6:.2f}'.format(
epoch+1, args.num_epochs,
train_loss / train_count,
train_loss_hdr / train_count,
train_loss_reg / train_count,
train_correct_025 / train_count,
train_correct_010 / train_count), end="")
best_accuracy = 0
val_loss = 0
val_loss_reg = 0
val_loss_hdr = 0
val_count = 0
val_correct_025 = 0
val_correct_010 = 0
for _, batch_data in enumerate(valid_dataloader):
net.eval()
# Turn exposure into one-hot vector, dim 20
with torch.no_grad():
ldr_val = batch_data['ldr'].cuda()
hdr_val = batch_data['hdr'].cuda()
label_val = batch_data['label'].cuda() / 1000.0
exposure_val = torch.LongTensor(batch_data['exposure']).reshape(ldr_val.shape[0],1)
exposure_val = torch.zeros(args.batch_size,20).scatter_(1,exposure_val/50-1,1)
exposure_val = exposure_val.cuda()
# integral_result_val = integral(hdr_val)
# judge_val = (abs(integral_result_val-label_val) / label_val) <= 0.25
hdr_pred_val, label_pred_val = net(ldr_val, exposure_val)
loss_hdr_val = criterion_hdr(torch.log(hdr_pred_val+eps), torch.log(hdr_val+eps))
# loss_hdr_val = 0.8*criterion_hdr(torch.log(hdr_pred_val[judge_val,:,:,:]+eps), torch.log(hdr_val[judge_val,:,:,:]+eps)) + 0.2*criterion_hdr(torch.log(hdr_pred_val+eps), torch.log(hdr_val+eps))
val_loss_hdr += loss_hdr_val.item()
label_pred_val = label_pred_val.squeeze()
loss_reg_val = criterion_reg(label_pred_val, label_val.float())
val_loss_reg += loss_reg_val.item()
if args.integral:
loss_val = loss_hdr_val + loss_reg_val
else:
loss_val = loss_hdr_val
val_loss += loss_val.item()
val_count += ldr_val.shape[0]
val_correct_025 += ( (abs(label_pred_val-label_val) / label_val) <= 0.25 ).sum().item()
val_correct_010 += ( (abs(label_pred_val-label_val) / label_val) <= 0.10 ).sum().item()
val_accuracy_010 = val_correct_010 / val_count
val_accuracy_025 = val_correct_025 / val_count
writer.add_scalar('val_loss', val_loss / val_count, epoch)
writer.add_scalar('val_hdr_loss', val_loss_hdr / val_count, epoch)
writer.add_scalar('val_reg_loss', val_loss_reg / val_count, epoch)
writer.add_scalar('val_accuracy_25%', val_accuracy_025, epoch)
writer.add_scalar('val_accuracy_10%', val_accuracy_010, epoch)
print('\nEpoch [{0}/{1}]] Valid: total loss: {2:.2f} hdr loss: {3:.2f} reg loss: {4:.2f} 25%Accuracy {5:.2f} 10%Accuracy {6:.2f}'.format(
epoch+1, args.num_epochs,
val_loss / val_count,
val_loss_hdr / val_count,
val_loss_reg / val_count,
val_correct_025 / val_count,
val_correct_010 / val_count), end="")
elapsed = time.time() - start_time
print('\nEpoch: %d time elapsed: %.2f hours'%(epoch+1,elapsed/3600))
if val_accuracy_010 > best_accuracy:
best_accuracy = val_accuracy_010
state = {
'net': net,
'epoch': epoch,
}
torch.save(state, f'checkpoint/{exp_name}_best-model.pth')
total_elapsed = time.time() - total_start_time
print('Total time elapsed: %.2f days'%(total_elapsed/(3600*24)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--network", help="network architecture to use", default='deep', choices=['original', 'deep'])
parser.add_argument("--height", default=160, type=int, help="The height of input image")
parser.add_argument("--width", default=320, type=int, help="The width of input image")
parser.add_argument("--data_dir",default="dataset", help='Path to processed dataset')
parser.add_argument("--output_dir", default="training_output", help='Path to output directory, for weights and intermediate results')
parser.add_argument("--rand_data", default=True, help='Random shuffling of training data')
parser.add_argument("--batch_size", default=16, help='Batch size for training')
parser.add_argument("--num_epochs", default=100, help='Number of training epochs')
parser.add_argument("--lr", default=1e-4, help='Learning rate of HDR reconstruction network')
# parser.add_argument("--lr_reg", default=5e-3, help='Learning rate of spherical regression network')
parser.add_argument("--num_workers", default=4, help='Number of workers')
# parser.add_argument("--hdr", default=True, help='Whether or not include illuminance loss')
# parser.add_argument("--reg", default=False, help='Whether or not include illuminance loss')
parser.add_argument("--bandwidth", default=30, type=int, help="the bandwidth of the S2 signal", required=False)
parser.add_argument("--local_rank", default=0, type=int, help="local_rank")
parser.add_argument("--restore", default=False, type=bool, help="")
parser.add_argument("--integral", default=False, type=bool, help="Whether of not adding integral loss")
parser.add_argument("--adding_exposure", default=True, type=bool, help="Whether or not encode exposure information")
args = parser.parse_args()
main(args)