-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_reg.py
215 lines (165 loc) · 8.73 KB
/
run_reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import time, math, os, sys, random
import cv2 as cv
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
import argparse
from utils import *
from network import *
from tensorboardX import SummaryWriter
def main(args):
writer = SummaryWriter('logs/hdr/')
data_dir_hdr = os.path.join(args.data_dir, "hdr")
data_dir_ldr = os.path.join(args.data_dir, "ldr")
log_dir = os.path.join(args.output_dir, "logs")
im_dir = os.path.join(args.output_dir, "im")
#=== Localize training data ===================================================
# Get names of all images in the training path
frames = [name for name in sorted(os.listdir(data_dir_hdr)) if os.path.isfile(os.path.join(data_dir_hdr, name))]
# Randomize the images
if args.rand_data:
random.seed('111')
random.shuffle(frames)
# Split data into training/validation sets
splitPos = len(frames) - 567
frames_train, frames_valid = np.split(frames, [splitPos])
# Number of steps per epoch depends on the number of training images
training_samples = len(frames_train)
validation_samples = len(frames_valid)
steps_per_epoch = training_samples/args.batch_size
print("\n\nData to be used:")
print("\t%d training images" % training_samples)
print("\t%d validation images\n" % validation_samples)
train_ldr_paths = []
train_hdr_paths = []
train_label = []
train_exposure = []
for filename in frames_train:
filename = filename.strip()
list = filename.split('_')
# train_ldr_paths.append(f'{data_dir_ldr}/{filename[:-4]}')
train_ldr_paths.append(None)
train_hdr_paths.append(f'{data_dir_hdr}/{filename}')
train_exposure.append(float(list[1]))
train_label.append(float(list[1]))
valid_ldr_paths = []
valid_hdr_paths = []
valid_exposure = []
valid_label = []
for filename in frames_valid:
filename = filename.strip()
list = filename.split('_')
# valid_ldr_paths.append(f'{data_dir_ldr}/{filename[:-4]}')
train_ldr_paths.append(None)
valid_hdr_paths.append(f'{data_dir_hdr}/{filename}')
valid_exposure.append(float(list[1]))
valid_label.append(float(list[1]))
train_dataset = HDR2Illuminance(train_hdr_paths, train_label, args)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
valid_dataset = HDR2Illuminance(valid_hdr_paths, valid_label, args)
valid_dataloader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
# Network
# net = Net().cuda()
net = S2ConvNet_deep().cuda()
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
# criterion_hdr = nn.MSELoss().cuda()
criterion_reg = nn.MSELoss().cuda()
# Optimizer
# optim_hdr = torch.optim.Adam(net_hdr.parameters(), lr=args.lr_hdr)
# scheduler_hdr = torch.optim.lr_scheduler.StepLR(optim_hdr, step_size=int(steps_per_epoch), gamma=0.9)
# optim_reg = torch.optim.Adam(net_reg.parameters(), lr=args.lr_reg)
total_start_time = time.time()
for epoch in range(args.num_epochs):
if epoch <= 500:
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
elif epoch <= 800:
optim = torch.optim.Adam(net.parameters(), lr=args.lr/10.)
else:
optim = torch.optim.Adam(net.parameters(), lr=args.lr/100.)
train_loss_reg = 0
train_count = 0
train_correct_025 = 0
train_correct_010 = 0
start_time = time.time()
for curr_iter, batch_data in enumerate(train_dataloader):
# Turn exposure into one-hot vector, dim 20
# exposure = torch.LongTensor(batch_data['exposure']).reshape(args.batch_size,1)
# exposure = torch.zeros(args.batch_size,20).scatter_(1,exposure/50-1,1)
# ldr = batch_data['ldr'].cuda()
hdr = batch_data['hdr'].cuda()
label = batch_data['label'].cuda() / 1000.0
# exposure = exposure.cuda()
net.train()
optim.zero_grad()
label_pred = net(hdr)
label_pred = label_pred.squeeze()
loss_reg = criterion_reg(label_pred, label.float())
train_loss_reg += loss_reg.item()
loss_reg.backward()
optim.step()
train_count += label.shape[0]
train_correct_025 += ( (abs(label_pred-label) / label) <= 0.25 ).sum().item()
train_correct_010 += ( (abs(label_pred-label) / label) <= 0.10 ).sum().item()
print(curr_iter, loss_reg.item())
writer.add_scalar('train_reg_loss', train_loss_reg / train_count, epoch)
writer.add_scalar('train_accuracy_25%', train_correct_025 / train_count, epoch)
writer.add_scalar('train_accuracy_10%', train_correct_010 / train_count, epoch)
print('\rEpoch [{0}/{1}]] Train: reg loss: {2:.4f} 25%Accuracy {3:.4f} 10%Accuracy {4:.4f}'.format(
epoch+1, args.num_epochs,
train_loss_reg / train_count,
train_correct_025 / train_count,
train_correct_010 / train_count), end="")
best_accuracy = 0
val_loss_reg = 0
val_count = 0
val_correct_025 = 0
val_correct_010 = 0
for _, batch_data in enumerate(valid_dataloader):
net.eval()
# Turn exposure into one-hot vector, dim 20
with torch.no_grad():
hdr_val = batch_data['hdr'].cuda()
label_val = batch_data['label'].cuda() / 1000.0
label_pred_val = net(hdr_val)
label_pred_val = label_pred_val.squeeze()
loss_reg_val = criterion_reg(label_pred_val, label_val.float())
val_loss_reg += loss_reg_val.item()
val_count += label_val.shape[0]
val_correct_025 += ( (abs(label_pred_val-label_val) / label_val) <= 0.25 ).sum().item()
val_correct_010 += ( (abs(label_pred_val-label_val) / label_val) <= 0.10 ).sum().item()
elapsed = time.time() - start_time
writer.add_scalar('val_reg_loss', val_loss_reg / val_count, epoch)
writer.add_scalar('val_accuracy_25%', val_correct_025 / val_count, epoch)
writer.add_scalar('val_accuracy_10%', val_correct_010 / val_count, epoch)
print('\rEpoch [{0}/{1}]] Train: reg loss: {2:.4f} 25%Accuracy {3:.4f} 10%Accuracy {3:.4f}'.format(
epoch+1, args.num_epochs,
val_loss_reg / val_count,
val_correct_025 / val_count,
val_correct_010 / val_count), end="")
print('Epoch: %d time elapsed: %.2f hours'%(epoch+1,elapsed/3600))
if val_correct_010 > best_accuracy:
best_accuracy = val_correct_010
torch.save(net, 'best-model.pt')
total_elapsed = time.time() - total_start_time
print('Total time elapsed: %.2f days'%(total_elapsed/(3600*24)))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--network", help="network architecture to use", default='deep', choices=['original', 'deep'])
parser.add_argument("--height", default=160, type=int, help="The height of input image")
parser.add_argument("--width", default=320, type=int, help="The width of input image")
parser.add_argument("--data_dir",default="dataset", help='Path to processed dataset')
parser.add_argument("--output_dir", default="training_output", help='Path to output directory, for weights and intermediate results')
parser.add_argument("--rand_data", default=True, help='Random shuffling of training data')
parser.add_argument("--batch_size", default=256, help='Batch size for training')
parser.add_argument('--train_size', default=0.99, help='Fraction of data to use for training, the rest is validataion data')
parser.add_argument("--num_epochs", default=1000, help='Number of training epochs')
parser.add_argument("--lr", default=1e-3, help='Learning rate of HDR reconstruction network')
# parser.add_argument("--lr_reg", default=5e-3, help='Learning rate of spherical regression network')
parser.add_argument("--num_workers", default=0, help='Number of workers')
# parser.add_argument("--hdr", default=True, help='Whether or not include illuminance loss')
parser.add_argument("--reg_only", default=True, help='Whether or not include illuminance loss')
parser.add_argument("--bandwidth", default=30, type=int, help="the bandwidth of the S2 signal", required=False)
args = parser.parse_args()
main(args)