forked from open-mmlab/mmocr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrnn_academic_dataset.py
35 lines (30 loc) · 1008 Bytes
/
crnn_academic_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
_base_ = [
'../../_base_/default_runtime.py', '../../_base_/recog_models/crnn.py',
'../../_base_/recog_pipelines/crnn_pipeline.py',
'../../_base_/recog_datasets/MJ_train.py',
'../../_base_/recog_datasets/academic_test.py',
'../../_base_/schedules/schedule_adadelta_5e.py'
]
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
train_pipeline = {{_base_.train_pipeline}}
test_pipeline = {{_base_.test_pipeline}}
data = dict(
samples_per_gpu=64,
workers_per_gpu=4,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset',
datasets=train_list,
pipeline=train_pipeline),
val=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline),
test=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='acc')
cudnn_benchmark = True