-
Notifications
You must be signed in to change notification settings - Fork 61
/
dagchainer.cc
267 lines (234 loc) · 8.21 KB
/
dagchainer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*
* Author: A. L. Delcher and modified by bhaas.
*
* File: dagchainer.cpp
* Last Modified: 7 November 2003
* Second modification: Haibao Tang <bao@uga.edu> May 10, 2007
*
* Do DP on dag of matches to get chains of matches
* Changes made in the I/O section, the core chaining algorithm remains intact
*
* Modified by Yupeng Wang <wyp1125@uga.edu> March 31, 2011
* GAP_PENATY can be set by users
*/
#include "dagchainer.h"
// check whether an alignment overlap (tandem alignment)
static bool check_overlap(vector<int>& xx, vector<int>& yy)
{
int xmin = *min_element(xx.begin(), xx.end());
int xmax = *max_element(xx.begin(), xx.end());
int ymin = *min_element(yy.begin(), yy.end());
int ymax = *max_element(yy.begin(), yy.end());
return xmin <= ymax && ymin <= xmax;
}
static void retrieve_pos(int pid, int *pos1, int *pos2)
/* returns pos1, pos2 for the blast pair */
{
Blast_record *match_rec = &match_list[pid];
*pos1 = gene_map[match_rec->gene1].mid;
*pos2 = gene_map[match_rec->gene2].mid;
}
static bool is_significant(Seg_feat *sf, vector<Score_t>& score)
/* test if a syntenic block is significant, see description in permutation.cc */
{
/* see formula in permutation.cc, unknowns are m, N, L1, L2, l_1i l_2i*/
int s1_a, s1_b, s2_a, s2_b, m, N=0, L1, L2, i;
double l1, l2, summation=0;
/* get the start and stop coordinates on each syntenic segment */
s1_a = sf->s1->mid, s1_b = sf->t1->mid;
s2_a = sf->s2->mid, s2_b = sf->t2->mid;
/* calculate m, number of anchor points */
m = sf->pids.size();
/* calculate N, number of matches in the defined region*/
vector<Score_t>::const_iterator it;
for (it=score.begin(); it!=score.end(); it++)
{
if (it->x >=s1_a && it->x <=s1_b && it->y >=s2_a && it->y <=s2_b)
N++;
}
/* calculate l1, l2, distance between successive anchor points */
int l1_pos1, l1_pos2, l2_pos1, l2_pos2;
retrieve_pos(sf->pids[0], &l1_pos1, &l2_pos1);
for (i=1; i<m; i++)
{
retrieve_pos(sf->pids[i], &l1_pos2, &l2_pos2);
l1 = fabs(l1_pos2 - l1_pos1);
l2 = fabs(l2_pos2 - l2_pos1);
l1_pos1 = l1_pos2;
l2_pos1 = l2_pos2;
summation += log(l1)+log(l2);
}
/* calculate L1, L2, respective length of the matching region */
L1 = s1_b - s1_a, L2 = s2_b - s2_a;
/* this is the formula */
sf->e_value = exp(M_LN2 + ln_perm(N, m) + \
summation - (m-1)*(log(L1)+log(L2)));
return sf->e_value < E_VALUE;
}
static bool Descending_Score(const Path_t &a, const Path_t &b)
{
return a.score > b.score ||
(a.score == b.score && a.rc > b.rc);
}
// whether a mol_pair is self comparison, e.g. "at1&at1"
static bool check_self (const string &s)
{
int pos = s.find('&');
return s.substr(0, pos) == s.substr(pos+1);
}
static void print_chains(vector<Score_t>& score, const string &mol_pair)
/* Find and output highest scoring chains in score treating it as a DAG*/
{
vector<float> path_score;
vector<int> from, ans;
vector<Path_t> high;
vector<int> xx, yy;
Path_t p;
bool done;
int i, j, m, n, s, pid, num_gaps;
int del_x, del_y;
double x;
bool is_self = check_self(mol_pair);
sort(score.begin(), score.end());
do
{
done = true;
n = score.size();
path_score.resize(n);
from.resize(n);
for (i=0; i<n; i++)
{
path_score[i] = score[i].score;
from[i] = -1;
}
for (j=1; j<n; j++)
{
for (i=j-1; i>=0; i--)
{
del_x = score[j].x - score[i].x - 1;
del_y = score[j].y - score[i].y - 1;
if (del_x >= 0 && del_y >= 0)
{
// if (del_x > EXTENSION_DIST && del_y > EXTENSION_DIST)
// break;
// if (del_x > EXTENSION_DIST || del_y > EXTENSION_DIST)
// continue;
if (del_x > MAX_GAPS)
break;
if (del_y > MAX_GAPS)
continue;
//num_gaps = MAX(del_x, del_y)/UNIT_DIST;
num_gaps = MAX(del_x, del_y);
x = path_score[i] + score[j].score;
/* gap penalty */
if (num_gaps > 0)
x +=num_gaps*GAP_PENALTY;
if (x > path_score[j])
{
path_score[j] = x;
from[j] = i;
}
}
}
}
high.clear();
for (i=0; i<n; i++)
{
if (path_score[i] >= CUTOFF_SCORE)
{
p.score = path_score[i];
p.sub = i;
p.rc = score[i].x + score[i].y;
high.push_back(p);
}
}
sort (high.begin(), high.end(), Descending_Score);
m = high.size();
for (i=0; i<m; i++)
{
if (from[high[i].sub] != -2)
{
ans.clear();
for (j=high[i].sub; from[j]>=0; j=from[j])
{
ans.push_back(j);
}
ans.push_back(j);
if (from[j] == -2)
{
done = false;
break;
}
else
{
reverse(ans.begin(), ans.end());
s = ans.size();
if (is_self)
{
for (j=0; j<s; j++)
{
from[ans[j]] = -2;
xx.push_back(score[ans[j]].x);
yy.push_back(score[ans[j]].y);
}
}
Seg_feat sf;
Blast_record *br;
if (!(is_self && check_overlap(xx, yy)))
{
sf.score = path_score[high[i].sub];
for (j=0; j<s; j++)
{
from[ans[j]] = -2;
pid = score[ans[j]].pairID;
br = &match_list[pid];
sf.pids.push_back(pid);
}
/* start and stop positions for two sub-segments */
br = &match_list[sf.pids.front()];
sf.s1 = &gene_map[br->gene1];
sf.s2 = &gene_map[br->gene2];
br = &match_list[sf.pids.back()];
sf.t1 = &gene_map[br->gene1];
sf.t2 = &gene_map[br->gene2];
/* determine the orientation of the alignment */
sf.sameStrand = *(sf.s2) < *(sf.t2);
if (!sf.sameStrand) swap(sf.s2, sf.t2);
sf.mol_pair = mol_pair;
/* significance testing */
if (is_significant(&sf, score))
seg_list.push_back(sf);
}
xx.clear(), yy.clear();
}
}
}
if (!done)
{
for (i=j=0; i<n; i++)
{
if (from[i] != -2)
{
if (i!=j) score[j] = score[i];
j++;
}
}
score.resize(j);
}
}
while (!done);
}
void dag_main(vector<Score_t> &score, const string &mol_pair)
{
int i, n=score.size();
// should be sorted by y incremental
Max_Y = score[n-1].y;
// forward direction
print_chains(score, mol_pair);
// reverse complement the second coordinate set.
for (i=0; i<n; i++)
score[i].y = Max_Y - score[i].y + 1;
// reverse direction
print_chains(score, mol_pair);
score.clear();
}