DCN(Deep & Cross Network) explicitly applies feature crossing at each layer, requires no manual feature engineering, and adds negligible extra complexity to the DNN model.
DCN is combined of two parts: cross network and deep network. The deep network is a simple dnn, stacked by several fully connected layers. The Cross network, in other hands, is stacked by several cross layers. Each cross layer has two inputs: the original embedding layer and the output of the last cross layer. The calculating method is as follows.
Outputs of deep network and cross network are simply concatenated.
{
"data": {
"format": "dummy",
"indexrange": 148,
"numfield": 13,
"validateratio": 0.1
},
"model": {
"modeltype": "T_FLOAT_SPARSE",
"modelsize": 148
},
"train": {
"epoch": 15,
"numupdateperepoch": 10,
"lr": 0.01,
"decayclass": "WarmRestarts",
"decayalpha": 0.05
},
"default_optimizer": "adam",
"layers": [
{
"name": "embedding",
"type": "embedding",
"numfactors": 8,
"outputdim": 104,
"optimizer": {
"type": "momentum",
"momentum": 0.9,
"reg2": 0.01
}
},
{
"name": "deep",
"type": "FCLayer",
"outputdims": [
400,
104
],
"transfuncs": [
"relu",
"identity"
],
"inputlayer": "embedding"
},
{
"name": "cross1",
"type": "CrossLayer",
"outputdim": 104,
"inputlayers": [
"embedding",
"embedding"
]
},
{
"name": "cross2",
"type": "CrossLayer",
"outputdim": 104,
"inputlayers": [
"embedding",
"cross1"
]
},
{
"name": "concat",
"type": "ConcatLayer",
"outputdim": 208,
"inputlayers": [
"deep",
"cross2"
]
},
{
"name": "lr",
"type": "FCLayer",
"outputdims": [
1
],
"transfuncs": [
"identity"
],
"inputlayer": "concat"
},
{
"name": "simplelosslayer",
"type": "losslayer",
"lossfunc": "logloss",
"inputlayer": "lr"
}
]
}
#fill out the following paths
export HADOOP_HOME=your_hadoop_home
input_path=your_hdfs_path/data
model_path=your_hdfs_path/model
log_path=your_hdfs_path/log
ANGEL_HOME=your_path_to_angel
jsonconf=your_path_to_jsons/dcn.json
$ANGEL_HOME/bin/angel-submit \
-Dangel.am.log.level=INFO \
-Dangel.ps.log.level=INFO \
-Dangel.worker.log.level=INFO \
-Dangel.app.submit.class=com.tencent.angel.ml.core.graphsubmit.GraphRunner \
-Dml.model.class.name=com.tencent.angel.ml.core.graphsubmit.AngelModel \
-Dml.data.label.trans.class="PosNegTrans" \
-Dml.data.label.trans.threshold=0.5 \
-Dangel.train.data.path=$input_path \
-Dangel.save.model.path=$model_path \
-Dangel.log.path=$log_path \
-Daction.type=train \
-Dangel.workergroup.number=30 \
-Dangel.worker.memory.gb=30 \
-Dangel.worker.task.number=1 \
-Dangel.ps.number=5 \
-Dangel.ps.memory.gb=10 \
-Dangel.job.name=$jobname \
-Dangel.output.path.deleteonexist=true \
-Dangel.worker.env="LD_PRELOAD=./libopenblas.so" \
-Dangel.psagent.cache.sync.timeinterval.ms=100 \
-Dangel.task.data.storage.level=memory \
-Dangel.ml.conf=$ANGEL_HOME/$jsonconf \
-Dml.optimizer.json.provider=com.tencent.angel.ml.core.PSOptimizerProvider
- data:criteo.kaggle2014.train.svm.field
- resource:
- Angel:executor:30,30G memory,1task; ps:5,10G memory
- Time of 1 epochs:
- Angel:28min