-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
138 lines (113 loc) · 6.32 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import keras
import numpy as np
import numba as nb
from utils import *
from tqdm import *
import tensorflow as tf
import keras.backend as K
from keras.layers import *
class evaluate:
def __init__(self,dev_pair):
self.dev_pair = dev_pair
Matrix_A = Input(shape=(None,None))
Matrix_B = Input(shape=(None,None))
def dot(tensor):
k = 10
A,B = [K.squeeze(matrix,axis=0) for matrix in tensor]
A_sim = K.dot(A,K.transpose(B))
return K.expand_dims(A_sim,axis=0)
results = Lambda(dot)([Matrix_A,Matrix_B])
self.sim_model = keras.Model(inputs = [Matrix_A,Matrix_B],outputs = results)
k = 10
Matrix_A = Input(shape=(None,None))
results = Lambda(lambda x: K.expand_dims(K.sum(tf.nn.top_k(K.squeeze(x,axis=0),k=k)[0],axis=-1) / k,axis=0))(Matrix_A)
self.avg_model = keras.Model(inputs = [Matrix_A],outputs = results)
Matrix_A = Input(shape=(None,None))
LR_input = Input(shape=(None,))
RL_input = Input(shape=( None,))
Ans_input = Input(shape=(None,))
def CSLS(tensor):
sim,LR,RL,_ = [K.squeeze(m,axis=0) for m in tensor]
LR,RL = [K.expand_dims(m,axis=1) for m in [LR,RL]]
sim = 2*sim - K.transpose(LR)
sim = sim - RL
rank = tf.argsort(-sim,axis=-1)
return K.expand_dims(rank[:,0],axis=0)
rank = Lambda(CSLS)([Matrix_A,LR_input,RL_input,Ans_input])
self.rank_model = keras.Model(inputs = [Matrix_A,LR_input,RL_input,Ans_input],outputs = rank)
Matrix_A = Input(shape=(None,None))
LR_input = Input(shape=(None,))
RL_input = Input(shape=(None,))
Ans_input = Input(shape=(None,))
def CSLS(tensor):
sim,LR,RL,ans_rank = [K.squeeze(m,axis=0) for m in tensor]
LR,RL,ans_rank = [K.expand_dims(m,axis=1) for m in [LR,RL,ans_rank]]
sim = 2*sim - K.transpose(LR)
sim = sim - RL
rank = tf.argsort(-sim,axis=-1)
results = tf.where(tf.equal(rank,K.cast(K.tile(ans_rank,[1,len(self.dev_pair)]),dtype="int32")))
return K.expand_dims(results,axis=0)
results = Lambda(CSLS)([Matrix_A,LR_input,RL_input,Ans_input])
self.CSLS_model = keras.Model(inputs = [Matrix_A,LR_input,RL_input,Ans_input],outputs = results)
def CSLS_cal(self, Lvec,Rvec, evaluate = True,batch_size = 1024,flag="no_sim"):
L_sim,R_sim = [],[]
for epoch in range(len(Lvec) // batch_size + 1):
L_sim.append(self.sim_model.predict([np.expand_dims(Lvec[epoch * batch_size:(epoch + 1) * batch_size],axis=0),np.expand_dims(Rvec,axis=0)]))
R_sim.append(self.sim_model.predict([np.expand_dims(Rvec[epoch * batch_size:(epoch + 1) * batch_size],axis=0),np.expand_dims(Lvec,axis=0)]))
LR,RL = [],[]
for epoch in range(len(Lvec) // batch_size + 1):
LR.append(self.avg_model.predict([L_sim[epoch]]))
RL.append(self.avg_model.predict([R_sim[epoch]]))
if evaluate:
results = []
for epoch in range(len(Lvec) // batch_size + 1):
ans_rank = np.array([i for i in range(epoch * batch_size,min((epoch+1) * batch_size,len(Lvec)))])
result = self.CSLS_model.predict([R_sim[epoch],np.concatenate(LR,axis=1),RL[epoch],np.expand_dims(ans_rank,axis=0)])
results.append(result)
return np.concatenate(results,axis=1)[0]
else:
l_rank,r_rank = [],[]
for epoch in range(len(Lvec) // batch_size + 1):
ans_rank = np.array([i for i in range(epoch * batch_size,min((epoch+1) * batch_size,len(Lvec)))])
r_rank.append(self.rank_model.predict([R_sim[epoch],np.concatenate(LR,axis=1),RL[epoch],np.expand_dims(ans_rank,axis=0)]))
l_rank.append(self.rank_model.predict([L_sim[epoch],np.concatenate(RL,axis=1),LR[epoch],np.expand_dims(ans_rank,axis=0)]))
return np.concatenate(r_rank,axis=1)[0],np.concatenate(l_rank,axis=1)[0]
def CSLS_cal_sim(self, sim, evaluate = True,batch_size = 1024):
L_sim,R_sim = [],[]
for epoch in range(sim.shape[0] // batch_size + 1):
L_sim = sim[epoch * batch_size:(epoch + 1) * batch_size]
R_sim = (sim.T)[epoch * batch_size:(epoch + 1) * batch_size]
LR,RL = [],[]
for epoch in range(sim.shape[0] // batch_size + 1):
LR.append(self.avg_model.predict([tf.cast(np.expand_dims(L_sim[epoch],axis=0), tf.float32)]))
RL.append(self.avg_model.predict([tf.cast(np.expand_dims(R_sim[epoch],axis=0), tf.float32)]))
if evaluate:
results = []
for epoch in range(sim.shape[0] // batch_size + 1):
ans_rank = np.array([i for i in range(epoch * batch_size,min((epoch+1) * batch_size,sim.shape[0]))])
result = self.CSLS_model.predict([R_sim[epoch],np.concatenate(LR,axis=1),RL[epoch],np.expand_dims(ans_rank,axis=0)])
results.append(result)
return np.concatenate(results,axis=1)[0]
else:
l_rank,r_rank = [],[]
for epoch in range(sim.shape[0] // batch_size + 1):
ans_rank = np.array([i for i in range(epoch * batch_size,min((epoch+1) * batch_size,sim.shape[0]))])
r_rank.append(self.rank_model.predict([R_sim[epoch],np.concatenate(LR,axis=1),RL[epoch],np.expand_dims(ans_rank,axis=0)]))
l_rank.append(self.rank_model.predict([L_sim[epoch],np.concatenate(RL,axis=1),LR[epoch],np.expand_dims(ans_rank,axis=0)]))
return np.concatenate(r_rank,axis=1)[0],np.concatenate(l_rank,axis=1)[0]
def test(self, Lvec,Rvec):
results = self.CSLS_cal(Lvec,Rvec)
def cal(results):
hits1,hits5,hits10,mrr = 0,0,0,0
for x in results[:,1]:
if x < 1:
hits1 += 1
if x < 5:
hits5 += 1
if x < 10:
hits10 += 1
mrr += 1/(x + 1)
return hits1,hits5,hits10,mrr
hits1,hits5,hits10,mrr = cal(results)
print("Hits@1: ",hits1/len(Lvec)," ","Hits@5: ",hits5/len(Lvec)," ","Hits@10: ",hits10/len(Lvec)," ","MRR: ",mrr/len(Lvec))
return results