forked from ioanabica/SCIGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SCIGAN.py
390 lines (310 loc) · 22.9 KB
/
SCIGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (c) 2020, Ioana Bica
import numpy as np
import tensorflow as tf
from tqdm import tqdm
from utils.model_utils import equivariant_layer, invariant_layer, sample_dosages, sample_X, sample_Z
class SCIGAN_Model:
def __init__(self, params):
self.num_features = params['num_features']
self.num_treatments = params['num_treatments']
self.export_dir = params['export_dir']
self.h_dim = params['h_dim']
self.h_inv_eqv_dim = params['h_inv_eqv_dim']
self.batch_size = params['batch_size']
self.alpha = params['alpha']
self.num_dosage_samples = params['num_dosage_samples']
self.size_z = self.num_treatments * self.num_dosage_samples
self.num_outcomes = self.num_treatments * self.num_dosage_samples
tf.reset_default_graph()
tf.random.set_random_seed(10)
# Feature (X)
self.X = tf.placeholder(tf.float32, shape=[None, self.num_features], name='input_features')
# Treatment (T) - one-hot encoding for the treatment
self.T = tf.placeholder(tf.float32, shape=[None, self.num_treatments], name='input_treatment')
# Dosage (D)
self.D = tf.placeholder(tf.float32, shape=[None, 1], name='input_dosage')
# Dosage samples (D)
self.Treatment_Dosage_Samples = tf.placeholder(tf.float32,
shape=[None, self.num_treatments, self.num_dosage_samples],
name='input_treatment_dosage_samples')
# Treatment dosage mask to indicate the factual outcome
self.Treatment_Dosage_Mask = tf.placeholder(tf.float32,
shape=[None, self.num_treatments, self.num_dosage_samples],
name='input_treatment_dosage_mask')
# Outcome (Y)
self.Y = tf.placeholder(tf.float32, shape=[None, 1], name='input_y')
# Random Noise (G)
self.Z_G = tf.placeholder(tf.float32, shape=[None, self.size_z], name='input_noise')
def generator(self, x, y, t, d, z, treatment_dosage_samples):
with tf.variable_scope('generator', reuse=tf.AUTO_REUSE):
inputs = tf.concat(axis=1, values=[x, y, t, d, z])
G_shared = tf.layers.dense(inputs, self.h_dim, activation=tf.nn.elu, name='shared')
G_treatment_dosage_outcomes = dict()
for treatment in range(self.num_treatments):
treatment_dosages = treatment_dosage_samples[:, treatment]
treatment_dosages = tf.reshape(treatment_dosages, shape=(-1, 1))
G_shared_expand = tf.reshape(tf.tile(G_shared, multiples=[1, self.num_dosage_samples]),
shape=(-1, self.h_dim))
input_counterfactual_dosage = tf.concat(axis=1, values=[G_shared_expand, treatment_dosages])
treatment_layer_1 = tf.layers.dense(input_counterfactual_dosage, self.h_dim, activation=tf.nn.elu,
name='treatment_layer_1_%s' % str(treatment), reuse=tf.AUTO_REUSE)
treatment_layer_2 = tf.layers.dense(treatment_layer_1, self.h_dim, activation=tf.nn.elu,
name='treatment_layer_2_%s' % str(treatment), reuse=tf.AUTO_REUSE)
treatment_dosage_output = tf.layers.dense(treatment_layer_2, 1, activation=None,
name='treatment_output_%s' % str(treatment),
reuse=tf.AUTO_REUSE)
dosage_counterfactuals = tf.reshape(treatment_dosage_output, shape=(-1, self.num_dosage_samples))
G_treatment_dosage_outcomes[treatment] = dosage_counterfactuals
G_logits = tf.concat(list(G_treatment_dosage_outcomes.values()), axis=1)
G_logits = tf.reshape(G_logits, shape=(-1, self.num_treatments, self.num_dosage_samples))
return G_logits, G_treatment_dosage_outcomes
def dosage_discriminator(self, x, y, treatment_dosage_samples, treatment_dosage_mask,
G_treatment_dosage_outcomes):
with tf.variable_scope('dosage_discriminator', reuse=tf.AUTO_REUSE):
patient_features_representation = tf.expand_dims(tf.layers.dense(x, self.h_dim, activation=tf.nn.elu),
axis=1)
D_dosage_outcomes = dict()
for treatment in range(self.num_treatments):
treatment_mask = treatment_dosage_mask[:, treatment]
treatment_dosages = treatment_dosage_samples[:, treatment]
G_treatment_dosage_outcomes[treatment] = treatment_mask * y + (1 - treatment_mask) * \
G_treatment_dosage_outcomes[treatment]
dosage_samples = tf.expand_dims(treatment_dosages, axis=-1)
dosage_potential_outcomes = tf.expand_dims(G_treatment_dosage_outcomes[treatment], axis=-1)
inputs = tf.concat(axis=-1, values=[dosage_samples, dosage_potential_outcomes])
D_h1 = tf.nn.elu(equivariant_layer(inputs, self.h_inv_eqv_dim, layer_id=1,
treatment_id=treatment) + patient_features_representation)
D_h2 = tf.nn.elu(equivariant_layer(D_h1, self.h_inv_eqv_dim, layer_id=2, treatment_id=treatment))
D_logits_treatment = tf.layers.dense(D_h2, 1, activation=None,
name='treatment_output_%s' % str(treatment))
D_dosage_outcomes[treatment] = tf.squeeze(D_logits_treatment, axis=-1)
D_dosage_logits = tf.concat(list(D_dosage_outcomes.values()), axis=-1)
D_dosage_logits = tf.reshape(D_dosage_logits, shape=(-1, self.num_treatments, self.num_dosage_samples))
return D_dosage_logits, D_dosage_outcomes
def treatment_discriminator(self, x, y, treatment_dosage_samples, treatment_dosage_mask,
G_treatment_dosage_outcomes):
with tf.variable_scope('treatment_discriminator', reuse=tf.AUTO_REUSE):
patient_features_representation = tf.layers.dense(x, self.h_dim, activation=tf.nn.elu)
D_treatment_outcomes = dict()
for treatment in range(self.num_treatments):
treatment_mask = treatment_dosage_mask[:, treatment]
treatment_dosages = treatment_dosage_samples[:, treatment]
G_treatment_dosage_outcomes[treatment] = treatment_mask * y + (1 - treatment_mask) * \
G_treatment_dosage_outcomes[treatment]
dosage_samples = tf.expand_dims(treatment_dosages, axis=-1)
dosage_potential_outcomes = tf.expand_dims(G_treatment_dosage_outcomes[treatment], axis=-1)
inputs = tf.concat(axis=-1, values=[dosage_samples, dosage_potential_outcomes])
D_treatment_rep = invariant_layer(x=inputs, h_dim=self.h_inv_eqv_dim, treatment_id=treatment)
D_treatment_outcomes[treatment] = D_treatment_rep
D_treatment_representations = tf.concat(list(D_treatment_outcomes.values()), axis=-1)
D_shared_representation = tf.concat([D_treatment_representations, patient_features_representation], axis=-1)
D_treatment_rep_hidden = tf.layers.dense(D_shared_representation, self.h_dim, activation=tf.nn.elu,
name='rep_all',
reuse=tf.AUTO_REUSE)
D_treatment_logits = tf.layers.dense(D_treatment_rep_hidden, self.num_treatments, activation=None,
name='output_all',
reuse=tf.AUTO_REUSE)
return D_treatment_logits
def inference(self, x, treatment_dosage_samples):
with tf.variable_scope('inference', reuse=tf.AUTO_REUSE):
inputs = x
I_shared = tf.layers.dense(inputs, self.h_dim, activation=tf.nn.elu, name='shared')
I_treatment_dosage_outcomes = dict()
for treatment in range(self.num_treatments):
dosage_counterfactuals = dict()
treatment_dosages = treatment_dosage_samples[:, treatment]
for index in range(self.num_dosage_samples):
dosage_sample = tf.expand_dims(treatment_dosages[:, index], axis=-1)
input_counterfactual_dosage = tf.concat(axis=1, values=[I_shared, dosage_sample])
treatment_layer_1 = tf.layers.dense(input_counterfactual_dosage, self.h_dim, activation=tf.nn.elu,
name='treatment_layer_1_%s' % str(treatment),
reuse=tf.AUTO_REUSE)
treatment_layer_2 = tf.layers.dense(treatment_layer_1, self.h_dim, activation=tf.nn.elu,
name='treatment_layer_2_%s' % str(treatment),
reuse=tf.AUTO_REUSE)
treatment_dosage_output = tf.layers.dense(treatment_layer_2, 1, activation=None,
name='treatment_output_%s' % str(treatment),
reuse=tf.AUTO_REUSE)
dosage_counterfactuals[index] = treatment_dosage_output
I_treatment_dosage_outcomes[treatment] = tf.concat(list(dosage_counterfactuals.values()), axis=-1)
I_logits = tf.concat(list(I_treatment_dosage_outcomes.values()), axis=1)
I_logits = tf.reshape(I_logits, shape=(-1, self.num_treatments, self.num_dosage_samples))
return I_logits, I_treatment_dosage_outcomes
def train(self, Train_X, Train_T, Train_D, Train_Y, verbose=False):
# 1. Counterfactual generator
G_logits, G_treatment_dosage_outcomes = self.generator(x=self.X, y=self.Y, t=self.T, d=self.D,
z=self.Z_G,
treatment_dosage_samples=self.Treatment_Dosage_Samples)
# 2. Dosage discriminator
D_dosage_logits, D_dosage_outcomes = self.dosage_discriminator(x=self.X, y=self.Y,
treatment_dosage_samples=self.Treatment_Dosage_Samples,
treatment_dosage_mask=self.Treatment_Dosage_Mask,
G_treatment_dosage_outcomes=G_treatment_dosage_outcomes)
# 3. Treatment discriminator
D_treatment_logits = self.treatment_discriminator(x=self.X, y=self.Y,
treatment_dosage_samples=self.Treatment_Dosage_Samples,
treatment_dosage_mask=self.Treatment_Dosage_Mask,
G_treatment_dosage_outcomes=G_treatment_dosage_outcomes)
# 4. Inference network
I_logits, I_treatment_dosage_outcomes = self.inference(self.X, self.Treatment_Dosage_Samples)
G_outcomes = tf.identity(G_logits, name='generator_outcomes')
I_outcomes = tf.identity(I_logits, name="inference_outcomes")
# 1. Dosage discriminator loss
num_examples = tf.cast(self.batch_size, dtype=tf.int64)
factual_treatment_idx = tf.argmax(self.T, axis=1)
idx = tf.stack([tf.range(num_examples), factual_treatment_idx], axis=-1)
D_dosage_logits_factual_treatment = tf.gather_nd(D_dosage_logits, idx)
Dosage_Mask = tf.gather_nd(self.Treatment_Dosage_Mask, idx)
D_dosage_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=Dosage_Mask, logits=D_dosage_logits_factual_treatment))
# 2. Treatment discriminator loss
D_treatment_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.reduce_max(self.Treatment_Dosage_Mask, axis=-1),
logits=D_treatment_logits))
# 3. Overall discriminator loss
D_combined_prob = tf.nn.sigmoid(D_dosage_logits) * tf.nn.sigmoid(
tf.tile(tf.expand_dims(D_treatment_logits, axis=-1), multiples=[1, 1, self.num_dosage_samples]))
D_combined_loss = tf.reduce_mean(
self.Treatment_Dosage_Mask * -tf.log(D_combined_prob + 1e-7) + (1.0 - self.Treatment_Dosage_Mask) * -tf.log(
1.0 - D_combined_prob + 1e-7))
# 4. Generator loss
G_loss_GAN = -D_combined_loss
G_logit_factual = tf.expand_dims(tf.reduce_sum(self.Treatment_Dosage_Mask * G_logits, axis=[1, 2]), axis=-1)
G_loss_R = tf.reduce_mean((self.Y - G_logit_factual) ** 2)
G_loss = self.alpha * tf.sqrt(G_loss_R) + G_loss_GAN
# 4. Inference loss
I_logit_factual = tf.expand_dims(tf.reduce_sum(self.Treatment_Dosage_Mask * I_logits, axis=[1, 2]), axis=-1)
I_loss1 = tf.reduce_mean((G_logits - I_logits) ** 2)
I_loss2 = tf.reduce_mean((self.Y - I_logit_factual) ** 2)
I_loss = tf.sqrt(I_loss1) + tf.sqrt(I_loss2)
theta_G = tf.trainable_variables(scope='generator')
theta_D_dosage = tf.trainable_variables(scope='dosage_discriminator')
theta_D_treatment = tf.trainable_variables(scope='treatment_discriminator')
theta_I = tf.trainable_variables(scope='inference')
# %% Solver
G_solver = tf.train.AdamOptimizer(learning_rate=0.001).minimize(G_loss, var_list=theta_G)
D_dosage_solver = tf.train.AdamOptimizer(learning_rate=0.001).minimize(D_dosage_loss, var_list=theta_D_dosage)
D_treatment_solver = tf.train.AdamOptimizer(learning_rate=0.001).minimize(D_treatment_loss,
var_list=theta_D_treatment)
I_solver = tf.train.AdamOptimizer(learning_rate=0.001).minimize(I_loss, var_list=theta_I)
# Setup tensorflow
tf_device = 'gpu'
if tf_device == "cpu":
tf_config = tf.ConfigProto(log_device_placement=False, device_count={'GPU': 0})
else:
tf_config = tf.ConfigProto(log_device_placement=False, device_count={'GPU': 1})
tf_config.gpu_options.allow_growth = True
self.sess = tf.Session(config=tf_config)
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
# Iterations
print("Training SCIGAN generator and discriminator.")
for it in tqdm(range(5000)):
for kk in range(2):
idx_mb = sample_X(Train_X, self.batch_size)
X_mb = Train_X[idx_mb, :]
T_mb = np.reshape(Train_T[idx_mb], [self.batch_size, ])
D_mb = np.reshape(Train_D[idx_mb], [self.batch_size, ])
Y_mb = np.reshape(Train_Y[idx_mb], [self.batch_size, 1])
Z_G_mb = sample_Z(self.batch_size, self.size_z)
treatment_dosage_samples = sample_dosages(self.batch_size, self.num_treatments,
self.num_dosage_samples)
factual_dosage_position = np.random.randint(self.num_dosage_samples, size=[self.batch_size])
treatment_dosage_samples[range(self.batch_size), T_mb, factual_dosage_position] = D_mb
treatment_dosage_mask = np.zeros(shape=[self.batch_size, self.num_treatments,
self.num_dosage_samples])
treatment_dosage_mask[range(self.batch_size), T_mb, factual_dosage_position] = 1
treatment_one_hot = np.sum(treatment_dosage_mask, axis=-1)
_, G_loss_curr, G_logits_curr, G_logit_factual_curr = self.sess.run(
[G_solver, G_loss, G_logits, G_logit_factual],
feed_dict={self.X: X_mb, self.T: treatment_one_hot, self.D: D_mb[:, np.newaxis],
self.Treatment_Dosage_Samples: treatment_dosage_samples,
self.Treatment_Dosage_Mask: treatment_dosage_mask, self.Y: Y_mb,
self.Z_G: Z_G_mb})
for kk in range(1):
idx_mb = sample_X(Train_X, self.batch_size)
X_mb = Train_X[idx_mb, :]
T_mb = np.reshape(Train_T[idx_mb], [self.batch_size, ])
D_mb = np.reshape(Train_D[idx_mb], [self.batch_size, ])
Y_mb = np.reshape(Train_Y[idx_mb], [self.batch_size, 1])
Z_G_mb = sample_Z(self.batch_size, self.size_z)
treatment_dosage_samples = sample_dosages(self.batch_size, self.num_treatments,
self.num_dosage_samples)
factual_dosage_position = np.random.randint(self.num_dosage_samples, size=[self.batch_size])
treatment_dosage_samples[range(self.batch_size), T_mb, factual_dosage_position] = D_mb
treatment_dosage_mask = np.zeros(shape=[self.batch_size, self.num_treatments,
self.num_dosage_samples])
treatment_dosage_mask[range(self.batch_size), T_mb, factual_dosage_position] = 1
treatment_one_hot = np.sum(treatment_dosage_mask, axis=-1)
_, D_dosage_loss_curr = self.sess.run([D_dosage_solver, D_dosage_loss],
feed_dict={self.X: X_mb, self.T: treatment_one_hot,
self.D: D_mb[:, np.newaxis],
self.Treatment_Dosage_Samples: treatment_dosage_samples,
self.Treatment_Dosage_Mask: treatment_dosage_mask,
self.Y: Y_mb, self.Z_G: Z_G_mb})
idx_mb = sample_X(Train_X, self.batch_size)
X_mb = Train_X[idx_mb, :]
T_mb = np.reshape(Train_T[idx_mb], [self.batch_size, ])
D_mb = np.reshape(Train_D[idx_mb], [self.batch_size, ])
Y_mb = np.reshape(Train_Y[idx_mb], [self.batch_size, 1])
Z_G_mb = sample_Z(self.batch_size, self.size_z)
treatment_dosage_samples = sample_dosages(self.batch_size, self.num_treatments,
self.num_dosage_samples)
factual_dosage_position = np.random.randint(self.num_dosage_samples, size=[self.batch_size])
treatment_dosage_samples[range(self.batch_size), T_mb, factual_dosage_position] = D_mb
treatment_dosage_mask = np.zeros(shape=[self.batch_size, self.num_treatments,
self.num_dosage_samples])
treatment_dosage_mask[range(self.batch_size), T_mb, factual_dosage_position] = 1
treatment_one_hot = np.sum(treatment_dosage_mask, axis=-1)
_, D_treatment_loss_curr = self.sess.run([D_treatment_solver, D_treatment_loss],
feed_dict={self.X: X_mb, self.T: treatment_one_hot,
self.D: D_mb[:, np.newaxis],
self.Treatment_Dosage_Samples: treatment_dosage_samples,
self.Treatment_Dosage_Mask: treatment_dosage_mask,
self.Y: Y_mb, self.Z_G: Z_G_mb})
# %% Debugging
if it % 1000 == 0 and verbose:
D_treatment_loss_curr, D_dosage_loss_curr, G_loss_curr, = self.sess.run(
[D_treatment_loss, D_dosage_loss, G_loss],
feed_dict={self.X: X_mb, self.T: treatment_one_hot,
self.D: D_mb[:, np.newaxis],
self.Treatment_Dosage_Samples: treatment_dosage_samples,
self.Treatment_Dosage_Mask: treatment_dosage_mask,
self.Y: Y_mb, self.Z_G: Z_G_mb})
print('Iter: {}'.format(it))
print('D_loss_treatments: {:.4}'.format((D_treatment_loss_curr)))
print('D_loss_dosages: {:.4}'.format((D_dosage_loss_curr)))
print('G_loss: {:.4}'.format((G_loss_curr)))
print()
# Train Inference Network
print("Training inference network.")
for it in tqdm(range(10000)):
idx_mb = sample_X(Train_X, self.batch_size)
X_mb = Train_X[idx_mb, :]
T_mb = np.reshape(Train_T[idx_mb], [self.batch_size, ])
D_mb = np.reshape(Train_D[idx_mb], [self.batch_size, ])
Y_mb = np.reshape(Train_Y[idx_mb], [self.batch_size, 1])
Z_G_mb = sample_Z(self.batch_size, self.size_z)
treatment_dosage_samples = sample_dosages(self.batch_size, self.num_treatments,
self.num_dosage_samples)
factual_dosage_position = np.random.randint(self.num_dosage_samples, size=[self.batch_size])
treatment_dosage_samples[range(self.batch_size), T_mb, factual_dosage_position] = D_mb
treatment_dosage_mask = np.zeros(shape=[self.batch_size, self.num_treatments,
self.num_dosage_samples])
treatment_dosage_mask[range(self.batch_size), T_mb, factual_dosage_position] = 1
treatment_one_hot = np.sum(treatment_dosage_mask, axis=-1)
_, I_loss_curr = self.sess.run([I_solver, I_loss],
feed_dict={self.X: X_mb, self.T: treatment_one_hot,
self.D: D_mb[:, np.newaxis],
self.Treatment_Dosage_Samples: treatment_dosage_samples,
self.Treatment_Dosage_Mask: treatment_dosage_mask, self.Y: Y_mb,
self.Z_G: Z_G_mb})
# %% Debugging
if it % 1000 == 0 and verbose:
print('Iter: {}'.format(it))
print('I_loss: {:.4}'.format((I_loss_curr)))
print()
tf.compat.v1.saved_model.simple_save(self.sess, export_dir=self.export_dir,
inputs={'input_features': self.X,
'input_treatment_dosage_samples': self.Treatment_Dosage_Samples},
outputs={'inference_outcome': I_logits})