forked from LLNL/bmsl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
design.py
845 lines (729 loc) · 39.6 KB
/
design.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
# -*- coding: utf-8 -*-
# @Author: Andre Goncalves
# @Date: 2019-06-26 15:26:02
# @Last Modified by: Andre Goncalves
# @Last Modified time: 2019-07-24 12:50:34
import os
import types
import pickle
import shutil
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.metrics import precision_recall_curve
from sklearn.calibration import calibration_curve
import matplotlib.pyplot as plt
import matplotlib.backends.backend_pdf
matplotlib.rcParams.update({'font.size': 11})
from matplotlib.ticker import FormatStrFormatter
matplotlib.rcParams.update({'figure.autolayout': True})
from abc import ABCMeta, abstractmethod
from UTILS import config, performance_metrics
from UTILS.Logger import Logger
from methods.base import BaseEstimator
# metrics improvement sense
THE_HIGHER_THE_BETTER = ('area_under_curve', 'avg_precision',
'weighted_accuracy', 'accuracy',
'accuracy_per_class', 'c_index',
'c_index_ours')
THE_LOWER_THE_BETTER = ('rmse', 'nmse', 'rmse_survival',
'mse_survival', 'brier_score',
'mae_survival')
# maximum and minimum relative performance improvement
# it is necessary to avoid large differences that distorts the plots
MAX_REL_IMPROVEMENT = 250
class DatasetMTL(object):
""" """
__metaclass__ = ABCMeta
def __init__(self, dataset_name):
"""."""
self.name = None
self.data = None
self.dataset_name = dataset_name
@abstractmethod
def prepare_data(self):
"""."""
pass
@abstractmethod
def shuffle_data(self):
"""."""
pass
class ModelTraining(object):
"""
"""
def __init__(self, name):
assert isinstance(name, str)
self.name = name
self.dataset = None
self.methods = None
self.metrics = None
self.nb_runs = -1
self.nb_tasks = -1
self.logger = Logger()
def execute(self, dataset, methods, metrics, nb_runs=1, report_only=False):
self.__check_inputs(dataset, methods, metrics, nb_runs)
self.dataset = dataset
self.methods = methods
self.metrics = metrics
self.nb_tasks = dataset.get_nb_tasks()
self.nb_runs = nb_runs
if report_only:
return 0
# set experiment output directory
directory = os.path.join(config.path_to_output, self.name)
# if directory already exists, then delete it
if os.path.exists(directory):
shutil.rmtree(directory)
# make a new directory with experiment name
os.makedirs(directory)
# experiment log file will be save in 'directory'
self.logger.set_path(directory)
self.logger.setup_logger('{}.log'.format(self.name))
self.logger.info('Experiment directory created.')
# get list of available metrics
metric_func = {a: performance_metrics.__dict__.get(a)
for a in dir(performance_metrics)
if isinstance(performance_metrics.__dict__.get(a),
types.FunctionType)}
for r_i in range(self.nb_runs):
self.logger.info('Executing \'Run {}\'.'.format(r_i+1))
# shuffle and re-split the data between training and test
self.dataset.shuffle_data()
run_directory = os.path.join(directory, 'run_{}'.format(r_i+1))
# execute all methods passed through 'methods' attribute
for method in self.methods:
self.logger.info('Running {}.'.format(method.name))
# set method's output directory
method_directory = os.path.join(run_directory, method.__str__())
# create directory to save method's results/logs
os.makedirs(method_directory)
# inform output directory path to the method
method.set_output_directory(method_directory)
# check model paradigm: STL or MTL
if method.paradigm == 'STL':
# dict to store performance metrics for all tasks
# obtained using 'method'
results = {}
ypred_yobs = {}
for t in range(self.nb_tasks):
self.logger.info(('Processing %s' %
self.dataset.data['db_names'][t]))
# print('[Y] Shape: {} \t Sum: {}'.format(self.dataset.data['train']['y'][t].shape,
# self.dataset.data['train']['y'][t].sum()))
# print(self.dataset.data['train']['x'][t].columns)
method.fit(self.dataset.data['train']['x'][t],
self.dataset.data['train']['y'][t],
censor_flag=self.dataset.data['train']['censor_flag'][t],
survival_time=self.dataset.data['train']['svv_time'][t],
column_names=self.dataset.column_names,
column_dtypes=self.dataset.column_dtypes,
unique_categ_values=self.dataset.unique_values_categ,
run=r_i, task_id=t)
y_pred = method.predict(self.dataset.data['test']['x'][t], task_id=t)
v_t = self.dataset.data['test']['svv_time'][t]
d_t = self.dataset.data['test']['censor_flag'][t]
sample_id = self.dataset.data['test']['sample_id'][t]
ypred_yobs[self.dataset.data['db_names'][t]] = {'pred': y_pred,
'obs': self.dataset.data['test']['y'][t],
'svv_time': v_t,
'censor_flag': d_t,
'sample_id': sample_id}
# dict to save performance metrics for the t-th task
result_task = {}
for met in self.metrics:
y_true = self.dataset.data['test']['y'][t]
result_task[met] = metric_func[met](y_pred,
y_true,
censor_flag=self.dataset.data['test']['censor_flag'][t],
survival_time=self.dataset.data['test']['svv_time'][t])
n_samples = self.dataset.data['train']['x'][t].shape[0]
results[self.dataset.data['db_names'][t]] = {'results': result_task,
'sample_size': n_samples}
# save result
elif method.paradigm == 'MTL':
method.fit(self.dataset.data['train']['x'].copy(),
self.dataset.data['train']['y'].copy(),
censor_flag=self.dataset.data['train']['censor_flag'].copy(),
survival_time=self.dataset.data['train']['svv_time'].copy(),
column_names=self.dataset.column_names,
column_dtypes=self.dataset.column_dtypes,
unique_categ_values=self.dataset.unique_values_categ,
run=r_i)
y_pred = method.predict(self.dataset.data['test']['x'].copy())
results = {}
ypred_yobs = {}
for t in range(self.nb_tasks):
result_task = {}
y_true = self.dataset.data['test']['y'][t].copy()
v_t = self.dataset.data['test']['svv_time'][t]
d_t = self.dataset.data['test']['censor_flag'][t]
sample_id = self.dataset.data['test']['sample_id'][t]
ypred_yobs[self.dataset.data['db_names'][t]] = {'pred': y_pred[t],
'obs': y_true,
'svv_time': v_t,
'censor_flag': d_t,
'sample_id': sample_id}
for met in self.metrics:
result_task[met] = metric_func[met](y_pred[t],
y_true,
censor_flag=self.dataset.data['test']['censor_flag'][t],
survival_time=self.dataset.data['test']['svv_time'][t])
n_samples = self.dataset.data['train']['x'][t].shape[0]
results[self.dataset.data['db_names'][t]] = {'results': result_task,
'sample_size': n_samples}
else:
raise ValueError('Unknown paradigm %s' % (method.paradigm))
# save predicted and observed values to file
output_fname1 = os.path.join(method_directory,
'{}_pred_obs.dat'.format(method.__str__()))
with open(output_fname1, 'wb') as fh:
pickle.dump(ypred_yobs, fh)
# save all performances to file
output_fname = os.path.join(method_directory,
'{}.pkl'.format(method.__str__()))
with open(output_fname, 'wb') as fh:
pickle.dump(results, fh)
self.logger.info('Results stored in %s' % (output_fname))
def generate_report(self):
# read results from experiment folder and store it into a dataframe
df, op_dict = self.__read_experiment_results()
tasks_orig = df['Task'].unique()
tasks_new = ['T{}'.format(i + 1) for i in range(len(df['Task'].unique()))]
tasks_name_mapping = dict(zip(tasks_orig, tasks_new))
task_names = pd.DataFrame(tasks_name_mapping.items(), columns=['Original', 'New name'])
# save results table into latex format
txt_filename = os.path.join(config.path_to_output,
self.name,
'{}_table.tex'.format(self.name))
dfa = df[['Run', 'Method', 'Task', 'Metric', 'Value']].copy()
dfb = dfa.groupby(['Method', 'Task', 'Metric']).agg(['mean', 'std'])
print(dfb)
with open(txt_filename, 'w') as fh:
fh.write(df.to_latex())
task_names.to_csv(os.path.join(config.path_to_output,
self.name, 'tasks_name_mapping.csv'), index=False)
# set output pdf name
pdf_filename = os.path.join(config.path_to_output,
self.name,
'{}_report.pdf'.format(self.name))
pdf = matplotlib.backends.backend_pdf.PdfPages(pdf_filename)
# call several plot functions
# self.__tasks_average_std_plot(df, pdf)
self.__performance_plots_per_method(df, op_dict, pdf)
# self.__pooled_performance_plots(df, op_dict, pdf)
self.__performance_plots_per_task(df, op_dict, pdf, tasks_orig, tasks_name_mapping)
# self.__plot_calibration_curves(df, op_dict, pdf)
# self.__individual_tasks_plot(df, op_dict, pdf)
# self.__methods_scatter_plot(df, pdf)
# self.__methods_diff_bars_plot(df, pdf)
# self.__plot_precision_recall_curve(df, op_dict, pdf)
# close pdf file
pdf.close()
def __check_inputs(self, dataset, methods, metrics, nb_runs):
# make sure all inputs have expected values and types
assert isinstance(dataset, DatasetMTL)
# make sure it received a list of methods
if not isinstance(methods, list):
methods = list(methods)
assert len(methods) > 0
# make sure it received a list of metrics
if not isinstance(metrics, list):
metrics = list(metrics)
assert len(metrics) > 0
# check if all methods are valid (instance of Method class)
for method in methods:
assert isinstance(method, BaseEstimator)
# get existing list of available performance metrics
existing_metrics = [a for a in dir(performance_metrics)
if isinstance(performance_metrics.__dict__.get(a),
types.FunctionType)]
# check if all metrics are valid (exist in performance_metrics module)
for metric in metrics:
assert metric in existing_metrics
# number of runs has to be larger then 0
assert nb_runs > 0
def __read_experiment_results(self):
""" Read results from an experiment folder (with multiple methods
results inside) and place it into a data frame structure.
Args:
experiment(str): name of the experiment in 'outputs' directory
"""
experiment_dir = os.path.join(config.path_to_output, self.name)
# list that will contain all results information as a table
# this list will be inserted in a pandas dataframe to become
# easier to generate plots and latex tables
result_contents = list()
obs_pred = dict()
for run in next(os.walk(experiment_dir))[1]:
obs_pred[run] = dict()
run_dir = os.path.join(experiment_dir, run)
# iterate over the methods
# method definition here is "an execution" of a method
# the same method (let's say Linear Regression) has two instances
# with different hyper-parameter values, then there will be two
# 'methods' here (or two entries in the results table)
for method in next(os.walk(run_dir))[1]:
method_dir = os.path.join(run_dir, method)
# get results filename (the one ending with 'pkl')
resf = [f for f in os.listdir(method_dir) if f.endswith('.pkl')][0]
with open(os.path.join(method_dir, resf), 'rb') as fh:
# dict with each task result as a key
# for each key is assigned a dict w/ task specific results
tasks_results = pickle.load(fh)
for k in tasks_results.keys():
# iterate over metrics for k-th task
for m in tasks_results[k]['results'].keys():
result_contents.append([run, method, method, k, m,
tasks_results[k]['results'][m],
tasks_results[k]['sample_size']])
# get results filename (the one ending in 'dat')
resf = [f for f in os.listdir(method_dir) if f.endswith('.dat')][0]
with open(os.path.join(method_dir, resf), 'rb') as fh:
tasks_results = pickle.load(fh)
obs_pred[run][method] = tasks_results
# store result_contents list into a dataframe for easier manipulation
column_names = ['Run', 'Method', 'Methods', 'Task', 'Metric', 'Value', 'SampleSize']
df = pd.DataFrame(result_contents, columns=column_names)
return df, obs_pred
def __tasks_average_std_plot(self, df, pdf):
""" Plot tasks average and std results.
It plots a single plot with the average and std results over all tasks.
Args:
df (pandas.DataFrame): panda's dataframe containing the results.
pdf (matplotlib.backend.pdf): matplotlib object to write plots into
a pdf file.
title (string): plot title.
"""
df.is_copy = None
runs = df['Run'].unique()
methods = df['Method'].unique()
methods_abrrev = df['Methods'].unique()
tasks = df['Task'].unique()
metrics = self.metrics
metric_map = {'area_under_curve_uncensored': 'AUC',
'avg_precision_uncensored': 'AP',
'brier_score': 'Brier score'}
for metric in metrics:
df_m = df.loc[df["Metric"] == metric]
perf_mat = np.zeros((len(runs), len(methods), len(tasks)))
for i, r in enumerate(runs):
for j, m in enumerate(methods):
df_ij = df_m.loc[(df_m['Run'] == r) & (df_m['Method'] == m)]
perf_mat[i, j, :] = df_ij['Value'].to_numpy()
colors = ['azure', 'green', 'sienna', 'orchid', 'darkblue']
colors += ["windows blue", "amber", "greyish", "faded green", "dusty purple"]
fig, ax1 = plt.subplots()
ax1.yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
bplot = plt.boxplot(perf_mat.mean(axis=2), patch_artist=True)
plt.xticks(1+np.arange(len(methods_abrrev)),
methods_abrrev, fontsize=15)
plt.ylabel(metric_map[metric], fontsize=15)
for i, (p1, p2) in enumerate(zip(bplot['boxes'], bplot['fliers'])):
p1.set(facecolor='xkcd:{}'.format(colors[i]))
p2.set(color='xkcd:{}'.format(colors[i]))
pdf.savefig(fig)
def __methods_scatter_plot(self, df, pdf):
metrics = self.metrics
for metric in metrics:
df_s = df.loc[df["Metric"] == metric]
methods = df_s['Method'].unique()
for i, met1 in enumerate(methods):
for j, met2 in enumerate(methods):
if i < j:
df_s1 = df_s.loc[df["Method"] == met1]
df_s2 = df_s.loc[df["Method"] == met2]
runs = df_s1['Run'].unique()
runs_m1 = np.zeros((self.nb_tasks, len(runs)))
runs_m2 = np.zeros((self.nb_tasks, len(runs)))
for k,run in enumerate(runs):
runs_m1[:, k] = df_s1.loc[df_s1['Run'] == run, 'Value'].to_numpy()
runs_m2[:, k] = df_s2.loc[df_s2['Run'] == run, 'Value'].to_numpy()
mean_m1 = runs_m1.mean(axis=1)
mean_m2 = runs_m2.mean(axis=1)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(mean_m1, mean_m2, 'bo')
xmin = min(np.min(mean_m1), np.min(mean_m2))
xmax = max(np.max(mean_m1), np.max(mean_m2))
ax.plot([xmin*0.8, xmax*1.2],
[xmin*0.8, xmax*1.2],
ls="--", c=".3")
tasks_name = df_s1['Task'].unique()
for l, txt in enumerate(tasks_name):
ax.annotate(txt[4:], (mean_m1[l],
mean_m2[l]),
fontsize=8)
# ax.set_title('%s: Method X Method' % (metric))
ax.set_xlabel(met1.split('_')[0])
ax.set_ylabel(met2.split('_')[0])
pdf.savefig(fig)
def __methods_diff_bars_plot(self, df, pdf):
fig = plt.figure()
metrics = self.metrics
for metric in metrics:
df_s = df.loc[df["Metric"] == metric]
methods = df_s['Method'].unique()
for i, met1 in enumerate(methods):
for j, met2 in enumerate(methods):
if i != j:
df_s1 = df_s.loc[df["Method"] == met1]
df_s2 = df_s.loc[df["Method"] == met2]
runs = df_s1['Run'].unique()
runs_m1 = np.zeros((self.nb_tasks, len(runs)))
runs_m2 = np.zeros((self.nb_tasks, len(runs)))
for k, run in enumerate(runs):
if k == 0:
ssize = df_s2.loc[df_s2['Run'] == run, 'SampleSize'].to_numpy()
runs_m1[:, k] = df_s1.loc[df_s1['Run'] == run, 'Value'].to_numpy()
runs_m2[:, k] = df_s2.loc[df_s2['Run'] == run, 'Value'].to_numpy()
s_ids = np.argsort(ssize)
ax = fig.add_subplot(1, 1, 1)
ax.yaxis.set_major_formatter(FormatStrFormatter('%d'))
# relative performance
delta = np.divide((runs_m1 - runs_m2), runs_m1, out=np.zeros_like(runs_m1), where=runs_m1 != 0) * 100
delta = np.minimum(np.maximum(delta, -MAX_REL_IMPROVEMENT), MAX_REL_IMPROVEMENT)
delta_mean = delta.mean(axis=1)
delta_mean = delta_mean.T[s_ids].T # reorder columns
if metric in THE_HIGHER_THE_BETTER:
colors = ['g' if d >= 0 else 'r' for d in delta_mean]
else:
colors = ['g' if d <= 0 else 'r' for d in delta_mean]
barp = plt.bar(np.arange(len(delta_mean)),
delta_mean, color=colors,
yerr=delta.std(axis=1),
error_kw=dict(lw=1))
# Add counts above the two bar graphs
for k, rect in enumerate(barp):
plt.text(rect.get_x() + rect.get_width()/2.0,
0, '%d' % ssize[s_ids[k]],
ha='center', va='bottom', fontsize=10,
color='k')
xticks = [xt for xt in df_s1['Task'].unique().tolist()]
# xticks = [t.replace('_', '\n') for t in xticks]
xticks = np.array(xticks)
xi = np.arange(delta.shape[0])
plt.xticks(xi, xticks[s_ids])
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
ax.tick_params(axis='x', which='major', labelsize=6)
title_txt = '{} vs {}'.format(met1.split('_')[0],
met2.split('_')[0])
ax.set_title(title_txt, fontsize=20)
metric_name = ' '.join(metric.split('_')).title()
ax.set_ylabel('{} \n Relative performance (%)'.format(metric_name), fontsize=15)
#plt.tight_layout()
pdf.savefig(fig)
plt.clf()
def __pooled_performance_plots(self, df, op_dict, pdf):
""" Compute performance metric of all test samples regardless the task.
Data from all tasks are pooled and then the performance is computed. """
# get list of available metrics
metric_func = {a: performance_metrics.__dict__.get(a)
for a in dir(performance_metrics)
if isinstance(performance_metrics.__dict__.get(a),
types.FunctionType)}
tasks = df['Task'].unique()
runs = op_dict.keys()
methods = op_dict[list(runs)[0]].keys()
for i, metric in enumerate(self.metrics):
perform = list()
for r, run in enumerate(runs):
for j, method in enumerate(methods):
# accumulate performance from all tasks
accum_pred = np.array([])
accum_observed = np.array([])
accum_v = np.array([])
accum_d = np.array([])
for task in tasks:
accum_pred = np.concatenate((accum_pred, op_dict[run][method][task]['pred'].ravel()))
accum_observed = np.concatenate((accum_observed, op_dict[run][method][task]['obs'].ravel()))
accum_v = np.concatenate((accum_v, op_dict[run][method][task]['svv_time'].ravel()))
accum_d = np.concatenate((accum_d, op_dict[run][method][task]['censor_flag'].ravel()))
# compute performance from data from all tasks
v = metric_func[metric](accum_pred,
accum_observed,
censor_flag=accum_d,
survival_time=accum_v)
perform.append([metric, run, method, v])
column_names = ['Metric', 'Run', 'Method', 'Value']
df_perf = pd.DataFrame(perform, columns=column_names)
with sns.plotting_context("notebook", font_scale=1.3):
g = sns.catplot(x="Method", y="Value", data=df_perf,
kind="bar", palette="colorblind")
g.set_axis_labels("", ' '.join(metric.split('_')).title()) # .set(ylim=(0.7, 0.8))
plt.tight_layout()
pdf.savefig(g.fig)
plt.clf()
def __performance_plots_per_method(self, df, op_dict, pdf):
""" Compute performance metric of all test samples regardless the task.
Data from all tasks are pooled and then the performance is computed. """
# get list of available metrics
metric_func = {a: performance_metrics.__dict__.get(a)
for a in dir(performance_metrics)
if isinstance(performance_metrics.__dict__.get(a),
types.FunctionType)}
tasks = df['Task'].unique()
runs = op_dict.keys()
methods = op_dict[list(runs)[0]].keys()
metric_map = {'area_under_curve_uncensored': 'AUC',
'avg_precision_uncensored': 'AP',
'brier_score': 'Brier score'}
# qualitative_colors = sns.color_palette("Set3", 10)
for i, metric in enumerate(self.metrics):
perform = list()
for r, run in enumerate(runs):
for j, method in enumerate(methods):
v = 0
for task in tasks:
# compute performance from data from all tasks
v += metric_func[metric](op_dict[run][method][task]['pred'],
op_dict[run][method][task]['obs'],
censor_flag=op_dict[run][method][task]['censor_flag'],
survival_time=op_dict[run][method][task]['svv_time'])
perform.append([metric, task, run, method, v / len(tasks)])
column_names = ['Metric', 'Task', 'Run', 'Method', 'Value']
df_perf = pd.DataFrame(perform, columns=column_names)
flierprops = dict(markerfacecolor='0.75', markersize=2, linestyle='none')
with sns.plotting_context("notebook", font_scale=0.7):
g = sns.catplot(x="Method", y="Value", data=df_perf,
kind="box", palette='colorblind', linewidth=0.01,
width=0.4, legend=False, flierprops=flierprops)
# g.despine(left=True)
# g.despine(left=True, bottom=True)
# g.set_xticklabels(rotation=90)
if metric in metric_map:
g.set_axis_labels("", metric_map[metric])
else:
g.set_axis_labels("", metric)
g.fig.set_size_inches(6, 4)
# plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
# if metric == 'brier_score':
# plt.ylim([0.15, 0.4])
# else:
# plt.ylim([0.55, 1])
plt.tight_layout()
pdf.savefig(g.fig)
plt.clf()
def __performance_plots_per_task(self, df, op_dict, pdf, tasks_orig, tasks_map):
""" Compute performance metric of all test samples regardless the task.
Data from all tasks are pooled and then the performance is computed. """
# get list of available metrics
metric_func = {a: performance_metrics.__dict__.get(a)
for a in dir(performance_metrics)
if isinstance(performance_metrics.__dict__.get(a),
types.FunctionType)}
# tasks_orig = df['Task'].unique()
# tasks_new = ['T{}'.format(i + 1) for i in range(len(df['Task'].unique()))]
# tasks_map = dict(zip(tasks_orig, tasks_new))
runs = op_dict.keys()
methods = op_dict[list(runs)[0]].keys()
metric_map = {'area_under_curve_uncensored': 'AUC',
'avg_precision_uncensored': 'AP',
'brier_score': 'Brier score'}
# qualitative_colors = sns.color_palette("Set3", 10)
for i, metric in enumerate(self.metrics):
perform = list()
for r, run in enumerate(runs):
for j, method in enumerate(methods):
for task in tasks_orig:
# compute performance from data from all tasks
v = metric_func[metric](op_dict[run][method][task]['pred'],
op_dict[run][method][task]['obs'],
censor_flag=op_dict[run][method][task]['censor_flag'],
survival_time=op_dict[run][method][task]['svv_time'])
perform.append([metric, tasks_map[task], run, method, v])
column_names = ['Metric', 'Task', 'Run', 'Method', 'Value']
df_perf = pd.DataFrame(perform, columns=column_names)
flierprops = dict(markerfacecolor='0.75', markersize=2, linestyle='none')
with sns.plotting_context("notebook", font_scale=1):
g = sns.catplot(x="Task", y="Value", hue='Method', data=df_perf,
kind="box", palette='colorblind', linewidth=0.01,
width=0.7, legend=False, flierprops=flierprops)
# g.despine(left=True)
# g.set_xticklabels(rotation=90)
if metric in metric_map:
g.set_axis_labels("", metric_map[metric])
else:
g.set_axis_labels("", metric)
g.fig.set_size_inches(8, 4)
# if metric == 'brier_score':
# plt.ylim([0, 0.7])
# else:
# plt.ylim([0, 1])
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
plt.tight_layout()
pdf.savefig(g.fig)
plt.clf()
def __individual_tasks_plot(self, df, op_dict, pdf):
""" Plot results for each task separately.
It plots results for all metrics for each task separately.
Each task will have its own plot and page in the pdf report file.
Args:
df (pandas.DataFrame): results data frame
pdf (matplotlib.backend.pdf): matplotlib object to write plots into
a pdf file.
"""
def __kpmeier(x):
x_uniq = np.unique(x)
x0 = list([x_uniq[0]])
x1 = list([1])
for t in x_uniq[:-1]:
s_hat_ti = list()
for ti in x_uniq:
if ti < t:
d_i = (x == ti).sum()
n_i = (x > ti).sum()
s_hat_ti.append((1 - d_i/float(n_i)))
x0.extend((t, t))
x1.extend((x1[-1], np.array(s_hat_ti).prod()))
x0.extend((x0[-1], x_uniq[-1], ))
x1.extend((0, 0))
return x0, x1
def __individual_metric_kaplan_meier(df, op_task, pdf, title):
df.is_copy = None
# fig, ax = plt.subplots(figsize=(10, 5), ncols=2, nrows=1)
fig = plt.figure()
fig.subplots_adjust(hspace=0.4, wspace=0.4)
ax1 = fig.add_subplot(2, 1, 1)
plt.suptitle(title, fontsize=16)
# Draw a nested barplot to show Class. ACC for each methods
g = sns.factorplot(x="Metric", y="Value", hue="Methods",
data=df, size=6, kind="bar",
palette="muted", legend=False, ax=ax1)
g.despine(left=True)
g.set_ylabels('Value')
plt.legend(loc='upper right')
if not title:
nb_tasks = len(df['Task'].unique())
g.fig.suptitle('Average over all ({}) tasks'.format(nb_tasks))
else:
g.fig.suptitle(title)
# kaplan meier
if df['Metric'].iloc[0] in ('rmse', 'nmse'):
# colors = ['azure', 'green', 'sienna', 'orchid', 'darkblue']
colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple"]
leg_list = list()
ax2 = fig.add_subplot(2, 1, 2)
for i, k in enumerate(op_task.keys()):
# plot observed curve
if i == 0:
y0, y1 = __kpmeier(op_task[k]['obs'])
ax2.plot(y0, y1, color='xkcd:black')
leg_list.append('Observed')
# plot predicted value for all methods
p0, p1 = __kpmeier(np.squeeze(op_task[k]['pred']))
ax2.plot(p0, p1, color='xkcd:%s' % colors[i])
leg_list.append(k[0:10])
ax2.set_xlabel('Time')
ax2.set_ylabel('Survival Probability (%)')
ax2.legend(leg_list)
pdf.savefig(fig)
df.is_copy = None
tasks = df['Task'].unique()
runs = op_dict.keys()
for task in tasks:
op_dict_task = dict()
for met in op_dict.keys():
op_dict_task[met] = op_dict[met][task]
__individual_metric_kaplan_meier(df[df['Task'] == task],
op_dict_task, pdf, task)
def __plot_prediction_distribution(self, df, op_dict, pdf):
""" Compute performance metric of all test samples regardless the task.
Data from all tasks are pooled and then the performance is computed. """
tasks = df['Task'].unique()
runs = op_dict.keys()
methods = op_dict[list(runs)[0]].keys()
colors = ["b", "r", "y", "g", "m", "k"]
fig = plt.figure()
precision = {}
recall = {}
for j, method in enumerate(methods):
for r, run in enumerate(runs):
# accumulate performance from all tasks
accum_pred = np.array([])
accum_observed = np.array([])
accum_v = np.array([])
accum_d = np.array([])
for task in tasks:
accum_pred = np.concatenate((accum_pred, op_dict[run][method][task]['pred'].ravel()))
accum_observed = np.concatenate((accum_observed, op_dict[run][method][task]['obs'].ravel()))
accum_v = np.concatenate((accum_v, op_dict[run][method][task]['svv_time'].ravel()))
accum_d = np.concatenate((accum_d, op_dict[run][method][task]['censor_flag'].ravel()))
precision[method], recall[method], _ = precision_recall_curve(accum_observed, accum_pred)
plt.step(recall[method], precision[method], color=colors[j], where='post', label=method)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.legend()
# plt.title('2-class Precision-Recall curve: AP={0:0.2f}'.format(average_precision))
pdf.savefig(fig)
plt.clf()
def __plot_calibration_curves(self, df, op_dict, pdf):
tasks = df['Task'].unique()
runs = op_dict.keys()
methods = op_dict[list(runs)[0]].keys()
colors = ["b", "r", "y", "g", "m", "k"]
fig = plt.figure()
plt.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for j, method in enumerate(methods):
for r, run in enumerate(runs):
# accumulate performance from all tasks
accum_pred = np.array([])
accum_observed = np.array([])
# accum_v = np.array([])
# accum_d = np.array([])
for task in tasks:
accum_pred = np.concatenate((accum_pred, op_dict[run][method][task]['pred'].ravel()))
accum_observed = np.concatenate((accum_observed, op_dict[run][method][task]['obs'].ravel()))
# accum_v = np.concatenate((accum_v, op_dict[run][method][task]['svv_time'].ravel()))
# accum_d = np.concatenate((accum_d, op_dict[run][method][task]['censor_flag'].ravel()))
fraction_of_positives, mean_predicted_value = \
calibration_curve(accum_observed, accum_pred, n_bins=10)
plt.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s" % (method, ))
plt.ylabel("Fraction of positives")
plt.ylim([-0.05, 1.05])
plt.legend(loc="lower right")
plt.title('Calibration plots (reliability curve)')
plt.legend()
# plt.title('2-class Precision-Recall curve: AP={0:0.2f}'.format(average_precision))
pdf.savefig(fig)
plt.clf()
def __plot_precision_recall_curve(self, df, op_dict, pdf):
""" Compute performance metric of all test samples regardless the task.
Data from all tasks are pooled and then the performance is computed. """
# get list of available metrics
# metric_func = {a: performance_metrics.__dict__.get(a)
# for a in dir(performance_metrics)
# if isinstance(performance_metrics.__dict__.get(a),
# types.FunctionType)}
tasks = df['Task'].unique()
runs = op_dict.keys()
methods = op_dict[list(runs)[0]].keys()
colors = ["b", "r", "y", "g", "m", "k"]
fig = plt.figure()
precision = {}
recall = {}
for j, method in enumerate(methods):
for r, run in enumerate(runs):
# accumulate performance from all tasks
accum_pred = np.array([])
accum_observed = np.array([])
accum_v = np.array([])
accum_d = np.array([])
for task in tasks:
accum_pred = np.concatenate((accum_pred, op_dict[run][method][task]['pred'].ravel()))
accum_observed = np.concatenate((accum_observed, op_dict[run][method][task]['obs'].ravel()))
accum_v = np.concatenate((accum_v, op_dict[run][method][task]['svv_time'].ravel()))
accum_d = np.concatenate((accum_d, op_dict[run][method][task]['censor_flag'].ravel()))
precision[method], recall[method], _ = precision_recall_curve(accum_observed, accum_pred)
plt.step(recall[method], precision[method], color=colors[j], where='post', label=method)
# plt.fill_between(recall[method], precision[method], step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.legend()
# plt.title('2-class Precision-Recall curve: AP={0:0.2f}'.format(average_precision))
pdf.savefig(fig)
plt.clf()