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Admin

* Assignment 2:
— Due this Friday! (Or, with late days, Saturday or Sunday.)

* We're going to start using calculus and linear algebra a lot.
— You should start reviewing these ASAP if you are rusty.
— A review of relevant calculus concepts is here.
— A review of relevant linear algebra concepts is here.


https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf
https://www.cs.ubc.ca/~schmidtm/Documents/2009_Notes_LinearAlgebra.pdf

Supervised Learning Round 2: Regression

* We're going to revisit supervised learning:
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* Previously, we considered classification:

— We assumed y; was discrete: y; = ‘spam’ or y; = ‘not spam’.

* Now we’re going to consider regression:
— We allow y, to be numerical: y; = 10.34cm.



Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:

— Does number of lung cancer deaths change with number of cigarettes?
— Does number of skin cancer deaths change with latitude?

okin cancer mortality versus State latitude
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:
— Do people in big cities walk faster?

— |s the universe expanding or shrinking or staying the same size?
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:

— Does number of gun deaths change with gun ownership?

— Does number violent crimes change with violent video games?

Gun ownership vs. gun deaths, by state
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Example: Dependent vs. Explanatory Variables

* We want to discover relationship between numerical variables:
— Does higher gender equality index lead to more women STEM grads?

* Not that we're doing supervised learning:
— Trying to predict value of 1 variable (the ‘y; values).
(instead of measuring correlation between 2).
e Supervised learning does not give causality:
— OK: “Higher index is correlated with lower grad %".
— OK: “Higher index helps predict lower grad %”.

— BAD: “Higher index leads to lower grads %”.

* People/media get these confused all the time, be careful!
* There are lots of potential reasons for this correlation.
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Handling Numerical Labels

* One way to handle numerical y;: discretize.
— E.g., for ‘age’ could we use {‘age < 20’, ‘20 < age < 30/, ‘age > 30’}.
— Now we can apply methods for classification to do regression.
— But coarse discretization loses resolution.

— And fine discretization requires lots of data.

* There exist regression versions of classification methods:

— Regression trees, probabilistic models, non-parametric models.

* Today: one of oldest, but still most popular/important methods:
— Linear regression based on squared error.
— Interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

Assume we only have 1 feature (d = 1):

— E.g., x; is number of cigarettes and y; is number of lung cancer deaths.

Linear regression makes predictions J; using a linear function of x::
A
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The parameter ‘w’ is the weight or regression coefficient of x.
— We're temporarily ignoring the y-intercept.
As x. changes, slope ‘w’ affects the rate that y. increases/decreases:

— Positive ‘w’: §; increase as x; increases.
— Negative ‘w’: J; decreases as x; increases.



Linear Regression in 1 Dimension
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Aside: terminology woes

* Different fields use different terminology and symbols.

— Data points = objects = examples = rows = observations.

— Inputs = predictors = features = explanatory variables = regressors =
independent variables = covariates = columns.

— Outputs = outcomes = targets = response variables = dependent variables
= labels (especially if it’s categorical).

— Regression coefficients = weights = parameters = betas.
* With linear regression, the symbols are inconsistent too:
— In ML, the data is X and y, and the weights are w; X is n by d.
— |n statistics, the data is X and y, and the weights are B; X is n by p.
— In optimization, the data is A and b, and the weights are x; X is m by n.
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Is linear regression “really” machine learning:

One rough “definition” of ML:

ou can publish about it at NeurlPS
Statisticians mlght hate it.... “ -

' Darren Dahly, PhD G
‘\é’ This nonsense is everywhere now.

On Uniform Convergence
and Low-Norm Interpolation Learning
[NeurIPS 2020]

LB ELCHIDEL LA M D EGE A
THERE ISN'T ANY F**KING "Al" IN THIS PAPER. nature.com/articles

Lijia Zhou Danica J. Sutherland Nathan Srebro
4158 University of Chicago TTI-Chicago TTI-Chicago
/S zlj@uchicago.edu danica@ttic.edu nati@ttic.edu
Abstract

We consider an underdetermined noisy linear regression model where the
minimum-norm interpolating predictor is known to be consistent, and ask: can

-q.\ H h a . .
n%"j' Lior Pachter Uniform Convergence of Interpolators: Gaussian

Width, Norm Bounds and Benign Overfitting
[NeurlPS 2021]

Oh | know... |ogi stic reg ression is "Al". Linear reg ression Frederic Koehler* Lijia Zhou* Danica J. Sutherland ~ Nathan Srebro
MIT University of Chicago UBC and Amii TTI-Chicago
iS "machine Iearning". fkoehler@mit.edu zlj@uchicago.edu dsuth@cs.ubc.ca nati@ttic.edu

Collaboration on the Theoretical Foundations of Deep Learning (deepfoundations.ai)

.but by any reasonable definition of ML, yes. Abstract

We consider interpolation learning in high-dimensional linear regression with
Gaussian data, and prove a generic uniform convergence guarantee on the general-



Least Squares Objective

* Our linear model is given by:
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* So we make predictions for a new example by using:
N
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e But we can’t use the same error as before:

— Usually don’t have a line where y; = yi exactly for many points n.

« Sampling noise, relationship not being quite linear, or even just floating-point issues.

— “Best” model may have |y; — y;| small but not exactly O.



Least Squares Objective

* Instead of “exact y.,”, we evaluate “size” of the error in prediction.
e Classic way is setting slope ‘w’ to minimize sum of squared errors:
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* There are some justifications for this choice. valae for erame

— A probabilistic interpretation is coming later in the course.

* But one strong reason is it is easy to minimize.



Least Squares Objective

* Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Least Squares Objective

* Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Minimizing a Differentiable Function

 Math 100 approach to minimizing a differentiable function ‘f’:

1. Take the derivative of f’.
2. Find points ‘w’ where the derivative f’(w) is equal to 0.
3. Choose the smallest one (and check that f"’(w) is positive).
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Digression: Multiplying by a Positive Constant

Note that this problem:

=2 Gox =)’

Has the same set of minimizers as this problem:
N
= | 2
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And these also have the same minimizers:
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| can multiply ‘f* by any positive constant and not change solution.
— Derivative will still be zero at the same locations.
— We'll use this trick a lot!

(an extremely serious Reddit post on ethics of this)



https://www.reddit.com/r/AIethics/comments/4qvi4m/is_it_ethical_to_remove_constants_from_your_loss/

Finding Least Squares Solution

* Finding ‘w’ that minimizes sum of squared errors:
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Finding Least Squares Solution

* Finding ‘w’ that minimizes sum of squared errors:
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e Let’s check that this is a minimizer by checking second derivative:
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— Since (anything)? is non-negative and (anything non-zero)? > 0,
if we have one non-zero feature then f”’(w) > 0 and this is a minimizer.



Least Squares Objective/Solution (Another View)

* Least squares minimizes a quadratic that is a sum of quadratics:
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(pause)



Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.

— For example, there environmental factors like exposure to asbestos.
How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
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We have a weight w, for feature ‘1’ and w, for feature 2’
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Least Squares in 2-Dimensions

 Linear model:
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Least Squares in 2-Dimensions

 Linear model:

A
Yi= WX T W Xig

* This defines a E
two-dimensional e i
plane. . R,
* Not just alinel i
Py Y



Different Notations for Least Squares

e |f we have ‘d’ features, the d-dimensional linear model is:
)/‘ S ‘A/,XH "‘ VVJX.'J + \4/3)(,5 +‘°' +M/‘[xi¢l

— In words, our model is that the output is a weighted sum of the inputs.

e We can re-write this in summation notation:

d

/.\_

Y= 2w
5=

e We can also re-write this in vector notation:

N T (I
>/‘. ~ \/v X‘. (afsvmin(} w amJ X; ay/'e (a/wmn‘\/(c#orj)

|
\/C///)nner- P! oduc

be fwx”f’n vedar;



Notation Alert (again)

* |n this course, all vectors are assumed to be column-vectors:
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* Sorows of ‘X’ are actually transpose of column-vector x::
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Least Squares in d-Dimensions

* The linear least squares model in d-dimensions minimizes:
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* Dates back to 1801: Gauss used it to predict location of Ceres.
* How do we find the best vector ‘w’ in ‘d’ dimensions?

— Can we set the “partial derivative” of each variable to 0?



Partial Derivatives
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Least Squares Partial Derivatives (1 Example)

* The linear least squares model in d-dimensions for 1 example:
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 Computing the partial derivative for variable ‘1’:
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Least Squares Partial Derivatives (‘n” Examples)

* Linear least squares partial derivative for variable 1 on example ‘i’:

D\N‘“ RCON w) = (w's = il
* For a generic variable j” we would have:
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 And if ‘f" is summed over all ‘'n’ examples we would have:
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. Unfortunately, the partial derlvat|ve for w; depends on all {w;, w,,..., w4}
— | can’t just “set equal to 0 and solve for w;".



Gradient and Critical Points in d-Dimensions

Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘W’ where the gradient vector equals the zero vector.

Gradient is vector with partial derivative ‘j’ in position ‘j’
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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘W’ where the gradient vector equals the zero vector.

e Gradient is vector with partial derivative ‘j’ in position j’:
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Summary

Regression considers the case of a numerical y..
Least squares is a classic method for fitting linear models.

— With 1 feature, it has a simple closed-form solution.
— Can be generalized to ‘d’ features.

Gradient is vector containing partial derivatives of all variables.

Next time:
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In Smithsonian National Air and Space Museum (Washington DCI{)):o/nu\s.

£ R g —— Scientists found in the meteorite trapped gas whose
4 composition was nearly identical to the Martian
ik / <% {| atmosphere as measured by the Viking Landers.

|| This graph compares the concentration of gases
| o || in the Martian atmosphere (vertical axis) with their

concentration in the meteorite (horizontal axis). If
1 11 they matched perfectly, the points would fall on the
diagonal line. The close match strongly suggests
that this meteorite came from Mars.
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