CPSC 340:
Machine Learning and Data Mining

Nonlinear Regression
Spring 2022 (2021W?2)



Admin

* al graded

A2 due today

* Transition to in person learning
— Monday (Feb 7t") still on Zoom

— Starting Wednesday onward, in person
* Recordings will be via panopto and in a different place (listed on syllabus on github)

« Office hours online (unless announced otherwise)

e Tutorials: some online, some offline (check
https://piazza.com/class/kyO0odbs6f7424n?cid=178)

— Check piazza before going to class in case of last minute changes (e.g.
professor has symptoms)



https://piazza.com/class/ky0odbs6f7424n?cid=178

Midterm

 Midterm
— Feb 17, 6:00-7:30pm
— Fully remote
— Open book
— No communication with others allowed

— Will be on Canvas



Last Time: Linear Regression

We discussed linear models:
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“Multiply feature x;; by weight w;,
add them to get y.".

We discussed squared error function:
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Interactive demo:
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DATA: THE SOCIAL BRAIN HYPOTHESIS, DUNBAR 1998

— http://setosa.io/ev/ordinary-least-squares-regression
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http://setosa.io/ev/ordinary-least-squares-regression

Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— We use ‘W’ as a “d times 1" vector containing weight ‘w;” in position ‘.

— We use ‘y’ as an “n times 1” vector containing target ‘y;’ in position .

— We use %" as a “d times 1” vector containing features ‘j’ of example .

— So ‘X" is a matrix with x," in row ‘V’.
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* We’re now going to be careful to make sure these are column vectors.
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— Our prediction for example ‘i’ is given by the scalar w'x,.
— Our predictions for all i’ (n times 1 vector) is the matrix-vector product Xw.
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Matrix/Norm Notation (MEMORIZE/STUDY THIS)

* To solve the d-dimensional least squares, we use matrix notation:

— Our prediction for example ‘i’ is given by the scalar w'x,.

— Our predictions for all i’ (n times 1 vector) is the matrix-vector product Xw.

— Residual vector ‘r’ gives difference between y; and predictions (n times 1).

— Least squares can be written as the squared L2-norm of the residual.
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Back to Deriving Least Squares ford > 2...

* We can write vector of predictions J; as a matrix-vector product:

1

n_ )
y‘Xw =N
T

 And we can write linear least squares in matrix notation as:

'F(w) =Ji{})(w“yflz ::I’ZI_\‘(WTX,' ‘Yi)z

 We’'ll use this notation to derive d-dimensional least squares ‘w’.

— By setting the gradient V f(w) equal to the zero vector and solving for ‘w’.



Digression: Matrix Algebra Review

e Quick review of linear algebra operations we’ll use:

— If ‘@’ and ‘b’ are vectors, and ‘A’ and ‘B’ are matrices then:

G\TL) = loTO\
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Linear and Quadratic Gradients

* From these rules we have (see post-lecture slide for steps):
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Linear and Quadratic Gradients

 We’'ve written as a d dimensional quadratic:
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* Using definitions of ‘A" and ‘b’ = XTXW - XTy
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Normal Equations

* Set gradient equal to zero to find the “critical” points:
i T
X Xu\,~ )( Yy = O

* We now move terms not involving ‘w’ to the other side:
ki EERVA
X YW = X \/

* This is a set of ‘d’ linear equations called the “normal equations”.
— This a linear system like “Ax = b” from Math 152.

* You can use Gaussian elimination to solve for ‘w’.

— In Python, you solve linear systems in 1 line using numpy.linalg.solve.



Incorrect Solutions to Least Squares Problem
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Least Squares Cost

Cost of solving “normal equations” X™Xw = X'y?

Forming X'y vector costs O(nd).

— It has ‘d” elements, and each is an inner product between ‘n’ numbers.
Forming matrix X™X costs O(nd?).

— It has d? elements, and each is an inner product between ‘n’ numbers.

Solving a d x d system of equations costs O(d?3).
— Cost of Gaussian elimination on a d-variable linear system.
— Other standard methods have the same cost.

Overall cost is O(nd? + d3).

— Which term dominates depends on ‘n” and ‘d’.



Least Squares Issues

* |ssues with least squares model: X is nx/
z
— Solution might not be unique. -
: . : T 'S d xn
— It is sensitive to outliers. °
“I .
— |t always uses all features. and  XTX s dxd

— Data might so big we can’t store X"X.
* Or you can’t afford the O(nd? + d3) cost.

— It might predict outside range of y; values.
— It assumes a linear relationship between x; and v..



Non-Uniqueness of Least Squares Solution

* Why isn’t solution unique?
— Imagine having two features that are identical for all examples.

— | can increase weight on one feature, and decrease it on the other,

without changing predictions. A _

opy
— Thus, if (wy,w,) is a solution then (w,+w,, 0) is another solution.

— This is special case of features being “collinear”:
e One feature is a linear function of the others.

* But, any ‘w’ where V f(w) = 0 is a global minimizer of ‘.
— This is due to convexity of ‘', which we’ll discuss later.



(pause)
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Motivation: Non-Linear Progressions in Athletics™

* Are top athletes going faster, higher, and farther?

100m PROGRESSION MEN AND WOMEN (mean of top ten) HIGH JUMP PROGRESSION MEN AND WOMEN (mean of top ten) SHOT PUT PROGRESSION MEN (7.26 kg) AND WOMEN (4 kg) (mean of top ten)
13.50 2.40 23.00
235 2 o,
D 2 ¥ (4 .l 22.00
~. J‘O‘ b ad . o o
—-— 230 P Y 2534 o % (Pl
X - r o
225 e K
20,00
2.20 LA toe_]
12.50 2.15 19.00
2.0 18.00
12.00 205 17.00
2.00 Pes oy o s & o
. 16.00 o' *s
1.95 00® o
11.50 15.00 52
1.90 = 3 -
,00g¢
1.85 14.00 . PRESC.) S
- ..‘4 yo? Lo
11.00 1.80 5100 £ anafsss o°, £
& 3 hS Ogq ¢ o000,
175 e
12.00 e
1.70 L)
10.50
11.00
1.65 03
1.60 10.00
10.00 0 = 1.55 9.00
1.50
8.00 Ld
- 1.45 roo
LB R 00 1 905 110 A1 91 S 1 92051 92511930 11335 1 20 NS R A 1 900X 196551 37091 9751198051385 ,4199041 99512000 /20052010 1.40 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
T 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
e - B

& !'_L L
h ' 1,)
PN o |

‘e 1




bon U\S.‘

Adapting Counting/Distance-Based Methods™

* We can adapt our classification methods to perform regression:



bon U\S.(

Adapting Counting/Distance-Based Methods™

We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.
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Adapting Counting/Distance-Based Methods™

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
* Take CPSC 440.
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Adapting Counting/Distance-Based Methods™

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.

— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

— Non-parametric models:

* KNN regression:
— Find ‘k’ nearest neighbours of X.
— Return the mean of the corresponding y;.

1OF
0.5}
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KNeighborsRegressor (k = 5, weights = 'uniform’)
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1
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Adapting Counting/Distance-Based Methods™

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.

10F 7

— Non_pa ra metrlc mOde|S: KNeighborsRegressor (k = 5, weights = 'uniform’)

1
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* KNN regression.
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Adapting Counting/Distance-Based Methods™

* We can adapt our classification methods to perform regression:
— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
— Non-parametric models:

* KNN regression.

* Could be weighted by distance. 1
* ‘Nadaraya-Waston’: weight all y; by distance to x;. =




d=2 q=0.5 nus|

Adapting Counting/| &
* We can adapt our classificatig z
— Regression tree: tree with meg > -
— Probabilistic models: fit p(x; | ¥ S
— Non-parametric models: o .

* KNN regression. ' ' : :
* Could be weighted by distance. 7/ 5 10 15

* ‘Nadaraya-Waston’: weight all y; X

* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)
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Adapting Counting/Distance-Based Methods™

* We can adapt our classification methods to perform regression:

— Regression tree: tree with mean value or linear regression at leaves.
— Probabilistic models: fit p(x; | y;) and p(y;) with Gaussian or other model.
— Non-parametric models:

* KNN regression.
* Could be weighted by distance.
* ‘Nadaraya-Waston’: weight all y; by distance to x..

* ‘Locally linear regression’: for each x;, fit a linear model weighted by distance.
(Better than KNN and NW at boundaries.)

— Ensemble methods:

e Can improve performance by averaging predictions across regression models.
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Adapting Counting/Distance-Based Methods™

 We can adapt our classification methods to perform regression.

* Applications:

— Regression forests for fluid simulation:
e https://www.youtube.com/watch?v=kGB7Wd9CudA
— KNN for image completion:
* http://graphics.cs.cmu.edu/projects/scene-completion
* Combined with “graph cuts” and “Poisson blending”.
* See also “PatchMatch”: https://vimeo.com/5024379
— KNN regression for “voice photoshop”:
e https://www.youtube.com/watch?v=1314XLZ59iw
e Combined with “dynamic time warping” and “Poisson blending”.

« But we’ll focus on linear models with non-linear transforms.
— These are the building blocks for more advanced methods.


https://www.youtube.com/watch?v=kGB7Wd9CudA
http://graphics.cs.cmu.edu/projects/scene-completion
https://vimeo.com/5024379
https://www.youtube.com/watch?v=I3l4XLZ59iw

Why don’t we have a y-intercept?

— Linear model is ¥, = wx; instead of y, = wx; + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict y, = 0.
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Why don’t we have a y-intercept?

— Linear model is ¥, = wx; instead of y, = wx; + w, with y-intercept w,.

— Without an intercept, if x, = 0 then we must predict y, = 0.
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Adding a Bias Variable

e Simple trick to add a y-intercept (“bias”) variable:
— Make a new matrix “Z” with an extra feature that is always “1”.

- I -0 1
X=[ o | 2=[} o3 |
0.2 |
] X

v
O
v
ﬂWq/s/
* Now use “Z” as your features in linear regression.
— We'll use ‘v’ instead of ‘W’ as regression weights when we use features 7.

N
y \/2/, 02*' Wo +lel
l i l
WO , W |l
 So we can have a non-zero y-intercept by changing features.
— This means we can ignore the y-intercept in our derivations, which is cleaner.



Motivation: Limitations of Linear Models

* On many datasets, y. is not a linear function of x.
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* Can we use least square to fit non-linear models?



Non-Linear Feature Transforms

Can we use linear least squares to fit a quadratic model?
N
2

y'. - Wy 1 M)(' + W, X

You can do this by changing the features (change of basis):
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Fit new parameters ‘v’ under “change of basis”: solve Z'2Zv = Z'y.
It’s a linear function of w, but a quadratic function of x.
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Non-Linear Feature Transforms
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General Polynomial Features (d=1)

 We can have a polynomial of degree ‘p’ by using these features:
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* There are polynomial basis functions that are numerically nicer:
— E.g., Lagrange polynomials (see CPSC 303).



Summary

Matrix notation for expressing least squares problem.

Normal equations: solution of least squares as a linear system.
— Solve (X™X)w = (XTy).

Solution might not be unique because of collinearity.

— But any solution is optimal because of “convexity”.

Non-linear transforms:

— Allow us to model non-linear relationships with linear models.



Linear Least Squares: Expansion Step

Wont ‘w' tha minimizes i Rule:
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Vector View of Least Squares

* We showed that least squares minimizes:

- i
F(W)“ 7'—_- “X\v")’”
* The 2 and the squaring don’t change solution, so equivalent to:

Fw) = “XW‘“yH

* From this viewpoint, least square minimizes Euclidean distance
between vector of labels ‘y’ and vector of predictions X w.
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Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math.
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Bonus Slide: Householder(-ish) Notation

 Househoulder notation: set of (fairly-logical) conventions for math:
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When does least squares have a unique solution?

We said that least squares solution is not unique if we have repeated
columns.

But there are other ways it could be non-unique:

— One column is a scaled version of another column.

— One column could be the sum of 2 other columns.

— One column could be three times one column minus four times another.

Least squares solution is unique if and only if all columns of X are
“linearly independent”.

— No column can be written as a “linear combination” of the others.

— Many equivalent conditions (see Strang’s linear algebra book):
e X has “full column rank”, X™X is invertible, XX has non-zero eigenvalues, det(X"X) > 0.

— Note that we cannot have independent columns if d > n.



