
CPSC 340:
Machine Learning and Data Mining

Gradient Descent
Spring 2022 (2021W2)

Admin

• Wednesday’s class: a bonus lecture on RL
– 12pm Helen Zhang
– 2pm Ben Norman
– room locations on syllabus
– Optional

Last Time: Change of Basis
• Last time we discussed change of basis:
– E.g., polynomial basis:

– You can fit non-linear models with linear regression.

– Just treat ‘Z’ as your data, then fit linear model.

General Polynomial Features

• If you have more than one feature, you can include interactions:
– With p=2, in addition to (xi1)2 and (xi2)2 you could include xi1xi2.

“Change of Basis” Terminology
• Instead of “nonlinear feature transform”, in machine learning

it is common to use the expression “change of basis”.
– The zi are the “coordinates in the new basis” of the training example.

• “Change of basis” means something different in math:
– Math: basis vectors must be linearly independent (in ML we don’t care).
– Math: change of basis must span the same space (in ML we change space).
– Of course, sometimes in ML we use “basis” in the math sense too.

• Unfortunately, saying “change of basis” in ML is common.
– If I say “change of basis”, just think “nonlinear feature transform”.

Linear Basis vs. Nonlinear Basis

Change of Basis Notation (MEMORIZE)
• Linear regression with original features:
– We use ‘X’ as our “n by d” data matrix, and ‘w’ as our parameters.
– We can find d-dimensional ‘w’ by minimizing the squared error:

• Linear regression with nonlinear feature transforms:
– We use ‘Z’ as our “n by k” data matrix, and ‘v’ as our parameters.
– We can find k-dimensional ‘v’ by minimizing the squared error:

• Notice that in both cases the target is still ‘y’.

Degree of Polynomial and Fundamental Trade-Off

• As the polynomial degree increases, the training error goes down.

• But approximation error goes up: we start overfitting with large ‘p’.
• Usual approach to selecting degree: validation or cross-validation.

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Beyond Polynomial Transformations
• Polynomials are not the only possible transformation:
– Exponentials, logarithms, trigonometric functions, and so on.
– The right non-linear transform will vastly improve performance.

• Later we will see “deep learning” where you try to learn a transformation.
– But when you have a lot of features, the right basis may not be obvious.

• The above bases are parametric model:
– The size of the model does not depend on the number of training examples ‘n’.
– As ‘n’ increases, you can estimate the model more accurately.
– But at some point, more data doesn’t help because model is too simple.

• Alternative is non-parametric models:
– Size of the model grows with the number of training examples.
– Model gets more complicated as you get more data.
– You can model very complicated functions where you don’t know the right basis.

xkcd

https://m.xkcd.com/2048/

Optimization Terminology
• When we minimize or maximize a function we call it “optimization”.
– In least squares, we want to solve the “optimization problem”:

– The function being optimized is called the “objective”.
• Also sometimes called “loss” or “cost”, but these can have different meanings in ML.

– The set over which we search for an optimum is called the domain.

– Often, instead of the minimum objective value, you want a minimizer.
• A set of parameters ‘w’ that achieves the minimum value.

Discrete vs. Continuous Optimization
• We have seen examples of continuous optimization:
– Least squares:

• Domain is the real-valued set of parameters ‘w’.
• Objective is the sum of the squared training errors.

• We have seen examples of discrete optimization:
– Fitting decision stumps:

• Domain is the finite set of unique rules.
• Objective is the number of classification errors (or infogain).

• We have also seen a mixture of discrete and continuous:
– K-means: clusters are discrete and means are continuous.

Stationary/Critical Points
• A ‘w’ with 𝛻 f(w) = 0 is called a stationary point or critical point.
– The slope is zero so the tangent plane is “flat”.

Stationary/Critical Points
• A ‘w’ with 𝛻 f(w) = 0 is called a stationary point or critical point.
– The slope is zero so the tangent plane is “flat”.

– If we’re minimizing, we would ideally like to find a global minimum.
• But for some problems the best we can do is find a stationary point where 𝛻 f(w)=0.

Motivation: Large-Scale Least Squares
• Normal equations find ‘w’ with ∇ f(w) = 0 in O(nd2 + d3) time.

– Very slow if ‘d’ is large.

• Alternative when ‘d’ is large is gradient descent methods.
– Probably the most important class of algorithms in machine learning.

Gradient Descent for Finding a Local Minimum
• Gradient descent is an iterative optimization algorithm:
– It starts with a “guess” w0.
– It uses the gradient ∇ f(w0) to generate a better guess w1.
– It uses the gradient ∇ f(w1) to generate a better guess w2.
– It uses the gradient ∇ f(w2) to generate a better guess w3.

…
– The limit of wt as ‘t’ goes to ∞ has ∇	f(wt) = 0.

• It converges to a global optimum if ‘f’ is “convex”.

Gradient Descent for Finding a Local Minimum
• Gradient descent is based on a simple observation:
– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum
• Gradient descent is based on a simple observation:
– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum
• Gradient descent is based on a simple observation:
– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum
• Gradient descent is based on a simple observation:
– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum
• Gradient descent is based on a simple observation:
– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Gradient Descent for Finding a Local Minimum
– We start with some initial guess, w0.
– Generate new guess by moving in the negative gradient direction:

• This decreases ‘f’ if the “step size” 𝛼! is small enough.
• Usually, we decrease α0 if it increases ‘f’ (see “findMin”).

– Repeat to successively refine the guess:

– Stop if not making progress or

Data Space vs. Parameter Space
• Usual regression plot is in the “x vs. y” data space (left):

• On the right is plot of the “intercept vs. slope” parameter space.
– Points in parameter space correspond to models (* is least squares parameters).

Gradient Descent in Data Space vs. Parameter Space

• Gradient descent starts with an initial guess in parameter space:

– And each iteration tries to move guess closer to solution.

Gradient Descent in Data Space vs. Parameter Space

• Gradient descent starts with an initial guess in parameter space:

– And each iteration tries to move guess closer to solution.

Gradient Descent in Data Space vs. Parameter Space

• Gradient descent starts with an initial guess in parameter space:

– And each iteration tries to move guess closer to solution.

Gradient Descent in Data Space vs. Parameter Space

• Gradient descent starts with an initial guess in parameter space:

– And each iteration tries to move guess closer to solution.

Gradient Descent in 2D

• Under weak conditions, algorithm converges to a ‘w’ with ∇ f(w) = 0.
– ‘f’ is bounded below, ∇ f can’t change arbitrarily fast, small-enough constant αt.

Gradient Descent for Least Squares
• The least squares objective and gradient:

• Gradient descent iterations for least squares:

• Cost of gradient descent iteration is O(nd) (no need to form XTX).

(how we got this gradient)

https://math.stackexchange.com/questions/2520680/how-to-compute-the-gradient-of-the-norm-for-linear-least-squares

Normal Equations vs. Gradient Descent
• Least squares via normal equations vs. gradient descent:
– Normal equations cost O(nd2 + d3).
– Gradient descent costs O(ndt) to run for ‘t’ iterations.

• Each of the ‘t’ iterations costs O(nd).

– Gradient descent can be faster when ‘d’ is very large:
• If solution is “good enough” for a ‘t’ less than minimum(d,d2/n).
• CPSC 5XX: ‘t’ proportional to “condition number” of XTX (no direct ‘d’ dependence).

– Normal equations only solve linear least squares problems.
• Gradient descent solves many other problems.

Beyond Gradient Descent
• There are many variations on gradient descent.
– Methods employing a “line search” to choose the step-size.
– “Conjugate” gradient and “accelerated” gradient methods.
– Newton’s method (which uses second derivatives).
– Quasi-Newton and Hessian-free Newton methods.
– Stochastic gradient (later in course).

• This course focuses on gradient descent and stochastic gradient:
– They’re simple and give reasonable solutions to most ML problems.
– But the above can be faster for some applications.

Convex Functions
• Is finding a ‘w’ with ∇f(w) = 0 good enough?
– Yes, for convex functions.

• A function is convex if the area above the function is a convex set.
– All values between any two points above function stay above function.

Convex Functions
• All ‘w’ with ∇	f(w) = 0 for convex functions are global minima.

– Normal equations find a global minimum because least squares is convex.

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.
– The sum of convex functions is a convex function.

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.
– The sum of convex functions is a convex function.

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.
– The sum of convex functions is a convex function.
– The max of convex functions is a convex function.

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.
– The sum of convex functions is a convex function.
– The max of convex functions is a convex function.
– Composition of a convex function and an affine function is convex.

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.
– The sum of convex functions is a convex function.
– The max of convex functions is a convex function.
– Composition of a convex function and a linear function is convex.

• But: not true that multiplication of convex functions is convex:
– If f(x)=x (convex) and g(x)=x2 (convex), f(x)g(x) = x3 (not convex).

How do we know if a function is convex?
• Some useful tricks for showing a function is convex:
– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
– A convex function multiplied by non-negative constant is convex.
– Norms and squared norms are convex.
– The sum of convex functions is a convex function.
– The max of convex functions is a convex function.
– Composition of a convex function and a linear function is convex.

• Also not true that composition of convex with convex is convex:

Summary
• Gradient descent finds critical point of differentiable function.
– Can be faster than normal equations for large ‘d’ values.
– Finds global optimum if function is convex.

• Convex functions:
– Set of functions with property that ∇	f(w) = 0 implies ‘w’ is a global min.
– Can (usually) be identified using a few simple rules.

• Next time:
– Linear regression without the outlier sensitivity…

Converting to Matrix Notation

Constraints, Continuity, Smoothness
• Sometimes we need to optimize with constraints:
– Later we’ll see “non-negative least squares”.

– A vector ‘w’ satisfying w ≥ 0 (element-wise) is said to be “feasible”.

• Two factors affecting difficulty are continuity and smoothness.
– Continuous functions tend to be easier than discontinuous functions.
– Smooth/differentiable functions tend to be easier than non-smooth.
– See the calculus review here if you haven’t heard these words in a while.

https://www.cs.ubc.ca/~schmidtm/Courses/Notes/calculus.pdf

Convexity, min, and argmin
• If a function is convex, then all critical points are global optima.

• However, convex functions don’t necessarily have critical points:
– For example, f(x) = a*x, f(x) = exp(x), etc.

• Also, more than one ‘x’ can achieve the global optimum:
– For example, f(x) = c is minimized by any ‘x’.

Why use the negative gradient direction?

• For a twice-differentiable ‘f’, multivariable Taylor expansion gives:

• If gradient can’t change arbitrarily quickly, Hessian is bounded and:

– But which choice of wt+1 decreases ‘f’ the most?
• As ||wt+1-wt|| gets close to zero, the value of wt+1 minimizing f(wt+1) in this formula

converges to (wt+1 – wt) = - αt ∇ f(wt) for some scalar αt
.

• So if we’re moving a small amount, the optimal wt+1 is:

Normalized Steps

variants can work okay – more on “normalized gradient descent”

https://jermwatt.github.io/machine_learning_refined/notes/3_First_order_methods/3_9_Normalized.html

Optimizer “findMin” Details

