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Admin

e Midterm

— Thu Feb 17 from 6:00-7:30pm
— You will have 85 minutes in that 90-minute window
— Covers assighnments 1-3; lectures L1 to L15 (be taught on Monday 14t")

* We released practice exams (on Piazza).



Last Time: Gradient Descent and Convexity

a

 We introduced gradient descent:
— Uses sequence of iterations of the form:

s’codim.
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— Converges to a stationary point where V f(w) = 0 under weak conditions.
* Will be a global minimum if the function is convex.

* We discussed ways to show a function is convex:

— Second derivative is non-negative (1D functions).

— Closed under addition, multiplication by non-negative constant,
maximization (max of convex functions is a convex fuction).

— Any [squared-]norm is convex.
— Composition of convex function with linear function is convex.



Example: Convexity of Linear Regression (Easy Way)

* Consider linear regression objective with squared error:
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* We can use that this is a convex function composed with linear:
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Convexity in Higher Dimensions

e Twice-differentiable ‘d’-variable function is convex iff:

— Eigenvalues of Hessian V2 f(w) are non-negative for all ‘w’.

* True for least squares where V2 f(w) = X™X for all ‘w’.

— See bonus slides for why X™X has non-negative eigenvalues.

* Unfortunately, sometimes it is hard to show convexity this way.

— Usually easier to just use some of the rules as we did on the last slide.



(pause)
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Least Squares with Outliers

* Height vs. weight of NBA players:
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Least Squares with Outliers

* Consider least squares problem with outligrs in ‘y’:
x & outlier  Thit doesn't fo/lse ren J
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http://setosa.io/ev/ordinary-least-squares-regression



http://setosa.io/ev/ordinary-least-squares-regression

Least Squares with Outliers

* Consider least squares problem with outligrs in‘y’:
x & outlier  Thit doesn't fo/lse ren J
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* Least squares is very sensitive to outliers.
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Least Squares with Outliers

* Squaring error shrinks small errors, and magnifies largk errors:
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* QOutliers (large error) influence ‘w’ much more than other points.

https://seeing-theory.brown.edu/regression-analysis/index.html
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Least Squares with Outliers

* Squaring error shrinks small errors, and magnifies large errors:
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* QOutliers (large error) influence ‘w’ much more than other points.

— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’. ,
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Robust Regression

Robust regression objectives focus less on large errors (outliers).
For example, use absolute error instead of squared error:

tlw)= é'— w'x — )/"l

Now decreasing ‘small’ and ‘large’ errors is equally important.

Instead of minimizing L2-norm, minimizes L1-norm of residuals:
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Least Squares with Outliers

e Absolute error is more robust to outliers:
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Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder.

— We don’t have “normal equations” for minimizing the L1-norm.
— Absolute value is non-differentiable at O.
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— Generally, harder to minimize non-smooth than smooth functions.
e Unlike smooth functions, the gradient may not get smaller near a minimizer.

— To apply gradient descent, we’ll use a smooth approximation.



Smooth Approximations to the L1-Norm

* There are differentiable approximations to absolute value.

— Common example is Huber loss: .

fl) = 2 AW =y)

. . j : —
r; = 4 - ! W
h( l) 6( \Pi ~ -.'ECS) oﬂf’rwiSﬁ -6\/_\3\_/6 abse lute error

Squared “error near zew. ALY from zero.

— Note that ‘h’ is differentiable: h’(€) = € and h'(-¢) = -¢.

— This ‘f” is convex but setting VV'f(x) = 0 does not give a linear system.
e But we can minimize the Huber loss using gradient descent.



Very Robust Regression
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* Non-convex errors can be very robust:

— Not influenced by outlier groups.
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Very Robust Regression

Non=convey €rrors
are much more
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* Non-convex errors can be very robust:
— Not influenced by outlier groups. \\_‘7 gvl?t? Yery vobued ! M)w ik

— But non-convex, so finding
global minimum is hard.

— Absolute value is “most robust” /
convex loss function.
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Motivation for Modeling Outliers -
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THE PROBLEM WITH
AVERAGING STAR RATINGS

 What if the “outlier” is the only non-male person in your dataset?

— Do you want to be robust to the outlier?
— Will the model work for everyone if it has good average case performance?

https://xkcd.com/937/



“Brittle” Regression

 What if you really care about getting the outliers right?

— You want to minimize size of worst error across examples.
* For example, if in worst case the plane can crash.

* |n this case you could use something like the infinity-norm:

l(\(w> = H)(w‘ yl’o@ X where ”r”obz i’m't)( g |f:,;

X
X )(XX p .
X)(X
* Very sensitive to outliers (“brittle”), but minimizes worst (highest)
errors.



Log-Sum-Exp Function

* As with the L;-norm, the L..-norm is convex but non-smooth:
— We can again use a smooth approximation and fit it with gradient descent.

* Convex and smooth approximation to max function is log-sum-exp function:

m_\mygziz o |03( Ziexf)(Z,?)

— WEe’ll use this several times in the course.
— Notation reminder: when | write “log” | always mean “natural” logarithm: log(e) = 1.

* Intuition behind log-sum-exp:
— Jiexp(z;) = maxexp(z;), as largest element is magnified exponentially (if no ties).
l

— And notice that log(exp(z;)) = z..



Log-Sum-Exp Function Examples

* Log-sum-exp function as smooth approximation to max:
m_\”"( gzl- § " loac éi@XP (2))
* |f there aren’t “close” values, it’s really close to the max.
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/
 Comparison of max{0,w} and smooth log(exp(0) + exp(w)):
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Recap of Part 3



Linear Models, Least Squares

e Focus of Part 3 is linear models:

— Supervised learning where prediction is linear combination of features:
\/i = Wl xil +W2xil t .- +WJK!J

. = wa,-

* Regression:
— Target vy, is numerical, testing (y, == y,) doesn’t make sense.
M
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— Can find optimal ‘w’ by solving “normal equations”.



Change of Basis, Gradient Descent

* Change of basis: replaces features x. with non-linear transforms z;:
— Add a bias variable (feature that is always one).
— Polynomial basis.
— Other basis functions (logarithms, trigonometric functions, etc.).

* For large ‘d’ we often use gradient descent:
— |terations only cost O(nd).
— Converges to a critical point of a smooth function.
— For convex functions, it finds a global optimum.



Error Functions, Smoothing

Error functions:

* Squared error is sensitive to outliers.
e Absolute (L,) error and Huber error are more robust to outliers.
 Brittle (L..) error is more sensitive to outliers.
L, and L, error functions are convex but non-differentiable:
* Finding ‘W’ minimizing these errors is harder than squared error.
We can approximate these with differentiable functions:
* L, can be approximated with Huber.
* L., can be approximated with log-sum-exp.

With these smooth (convex) approximations,
we can find global optimum with gradient descent.



Finding the “True” Model

 What if our goal is find the “true” model?

— We believe that y; really is a polynomial function of x..
— We want to find the degree of the polynomial ‘p’.

* Should we choose the ‘p’ with the lowest training error?

— No, this will pick a ‘p’ that is way too large.
(training error always decreases as you increase ‘p’)



Finding the “True” Model

* What if our goal is find the “true” model?

— We believe that y; really is a polynomial function of x..
— We want to find the degree of the polynomial ‘p’.

* Should we choose the ‘p’ with the lowest validation error?
— This will also often choose a ‘p’ that is too large.

— Even if true model has p=2, this is a special case of a degree-3 polynomial.
— If ‘p’ is too big then we overfit, but might still get a lower validation error.



Complexity Penalties

 There are a lot of “scores” people use to find the “true” model.
e Basic idea behind them: put a penalty on the model complexity.

— Want to fit the data and have a simple model.

* For example, minimize training error plus the degree of polynomial.
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— If we use p=4, use “training error plus 4” as error. Polynormia

* If two ‘p’ values have similar error, this prefers the smaller ‘p’.



Choosing Degree of Polynomial Basis
* How can we optimize this score?
SCove ( 4)) - -"5“7,,\/‘7 '/z + P

— Form Z,, solve for ‘v’, compute score(0) = ¥2| | Z,v —y| |2 + O.
— Form Z,, solve for ‘v/, compute score(1) = 2| |Z,v—y]||? + 1.
— Form Z,, solve for ‘v/, compute score(2) = 2| |Z,v—y]| |? + 2.

— Form Z;, solve for ‘v/, compute score(3) = ¥2| | Zsv—y| |2 + 3.

— Choose the degree with the lowest score.

* “You need to decrease training error by at least 1 to increase degree by 1.”



Information Criteria

 There are many scores, usually with the form:
S(ove ( f) - %”Zf\/‘y '/z + )\ K

— The value ‘k’ is the “number of estimated parameters” (“degrees of freedom”).
* For polynomial basis, we have k =p + 1.

— The parameter A > 0 controls how strong we penalize complexity.
* “You need to decrease the training error by least A to increase ‘k’ by 1”.

e Using (A =1)is called Akaike information criterion (AIC).

* Other choices of A (not necessarily integer) give other criteria:
— Mallow’s C,..
— Adjusted R2.
— ANOVA-based model selection.
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https://statmodeling.stat.columbia.edu/2013/08/09/understanding-predictive-information-criteria-for-bayesian-models/
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Choosing Degree of Polynomial Basis
* How can we optimize this score in terms of ‘p’?

Slove ( 4)) = -"5”7,,\/‘7 '/z + \K

— Form Z,, solve for ‘v/, compute score(0) = Y2 | |Z,v —y| |2 + A.
— Form Z,, solve for ‘v/, compute score(1) = ¥2| |Z,v—y| |2 + 2A.
— Form Z,, solve for ‘v/, compute score(2) = ¥2| |Z,v—y| |? + 3\.

— Form Z;, solve for ‘v/, compute score(3) = ¥2| | Z3v—vy]| | ? + 4A.

— So we need to improve by “at least A” to justify increasing degree.

* If Ais big, we’ll choose a small degree. If A is small, we’ll choose a large degree.



Summary

Outliers in ‘y’ can cause problem for least squares.
Robust regression using L1-norm is less sensitive to outliers.
Brittle regression using Linf-norm is more sensitive to outliers.

Smooth approximations:

— Let us apply gradient descent to non-smooth functions.
— Huber loss is a smooth approximation to absolute value.
— Log-Sum-Exp is a smooth approximation to maximum.

Information criteria are scores that penalize number of parameters.
— When we want to find the “true” model.

Next time:
— Can we find the “true” features?



bon U\S_(

Random Sample Consensus (RANSAC) —

* In computer vision, a widely-used generic framework for robust
fitting is random sample consensus (RANSAC).

* This is designed for the scenario where: . o

— You have a large number of outliers. y . .

— Majority of points are “inliers”: . o of
it’s really easy to get low error on them. . . . .
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Random Sample Consensus (RANSAC) —

« RANSAC: Linear reqression bes
| on thee 2.
— Sample a small number of training examples. _ﬂ”’#".
* Minimum number needed to fit the model. e ©

* For linear regression with 1 feature, just 2 examples.

— Fit the model based on the samples.

* Fit a line to these 2 points.
e With ‘d’ features, you’ll need ‘d+1’ examples.

— Test how many points are fit well
based on the model.

— Repeat until we find a model that fits at
least the expected number of “inliers”.

* You might then re-fit based on the
estimated “inliers”.
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Log-Sum-Exp for Brittle Regression

* To use log-sum-exp for brittle regression:
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Log-Sum-Exp Numerical Trick

* Numerical problem with log-sum-exp is that exp(z,) might overflow.
— For example, exp(100) has more than 40 digits.

* Implementation ‘trick’: [ .t ﬁ:‘ May Zzé

lO‘j( ?(“/’(2—:)) = ’oq( ? CXIO(Z,' —p +ﬁ))

= o9 (2\ Cx,o(zj*/@)c)/,a (,@))

= leg ( exp(ﬁ) i' ezclg<z,-“'/4))

= lag Cexp(p)) 1 |aq(§exfz(z,*ﬁ)>
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Gradient Descent for Non-Smooth?

* “You are unlikely to land on a non-smooth point, so gradient descent
should work for non-smooth problems?”

— Consider just trying to minimize the absolute value function:

0)
— Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit

exactly 0, you will just bounce back and forth forever.

— We didn’t have this problem for smooth functions, since the gradient gets
smaller as you approach a minimizer.

— You could fix this problem by making the step-size slowly go to zero, but you
need to do this carefully to make it work, and the algorithm gets much slower.
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Gradient Descent for Non-Smooth?

)

* Counter-example from Bertsekas’ “Nonlinear Programming” where
gradient descent for a non-smooth convex problem does not
converge to a minimum.

4
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Figure 6.3.8. Contours and steepest ascent path for the function of Exercise
6.3.8.
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Example: Convexity of Linear Regression (Hard Way)

Consider linear regression objective with squared error:

fw)= “Xw'\/”z

Twice-differentiable ‘f’ is convex if V2 f(x) has eigenvalues = 0.

— This is equivalent to saying v V% f(x)v = 0 for all vectors v.

The Hessian for least squares is V4f (x) = X' X.
— See notes on Gradients and Hessians of quadratics on webpage.
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