
CPSC 340:
Machine Learning and Data Mining

Robust Regression
Spring 2022 (2021W2)

Admin
• Midterm
– Thu Feb 17 from 6:00-7:30pm
– You will have 85 minutes in that 90-minute window
– Covers assignments 1-3; lectures L1 to L15 (be taught on Monday 14th)

• We released practice exams (on Piazza).

Last Time: Gradient Descent and Convexity
• We introduced gradient descent:
– Uses sequence of iterations of the form:

– Converges to a stationary point where ∇ f(w) = 0 under weak conditions.
• Will be a global minimum if the function is convex.

• We discussed ways to show a function is convex:
– Second derivative is non-negative (1D functions).
– Closed under addition, multiplication by non-negative constant,

maximization (max of convex functions is a convex fuction).
– Any [squared-]norm is convex.
– Composition of convex function with linear function is convex.

Example: Convexity of Linear Regression (Easy Way)

• Consider linear regression objective with squared error:

• We can use that this is a convex function composed with linear:

Convexity in Higher Dimensions
• Twice-differentiable ‘d’-variable function is convex iff:
– Eigenvalues of Hessian 𝛻2 𝑓(𝑤) are non-negative for all ‘w’.

• True for least squares where 𝛻2 𝑓(𝑤) = XTX for all ‘w’.
– See bonus slides for why XTX has non-negative eigenvalues.

• Unfortunately, sometimes it is hard to show convexity this way.
– Usually easier to just use some of the rules as we did on the last slide.

(pause)

Least Squares with Outliers
• Height vs. weight of NBA players:

https://www.youtube.com/watch?v=i4eYWl1ewFo

Least Squares with Outliers
• Consider least squares problem with outliers in ‘y’:

http://setosa.io/ev/ordinary-least-squares-regression

http://setosa.io/ev/ordinary-least-squares-regression

Least Squares with Outliers
• Consider least squares problem with outliers in ‘y’:

• Least squares is very sensitive to outliers.

Least Squares with Outliers
• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.

https://seeing-theory.brown.edu/regression-analysis/index.html

https://seeing-theory.brown.edu/regression-analysis/index.html

Least Squares with Outliers
• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.
– Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.

Robust Regression
• Robust regression objectives focus less on large errors (outliers).
• For example, use absolute error instead of squared error:

• Now decreasing ‘small’ and ‘large’ errors is equally important.
• Instead of minimizing L2-norm, minimizes L1-norm of residuals:

Least Squares with Outliers
• Absolute error is more robust to outliers:

Regression with the L1-Norm
• Unfortunately, minimizing the absolute error is harder.
– We don’t have “normal equations” for minimizing the L1-norm.
– Absolute value is non-differentiable at 0.

– Generally, harder to minimize non-smooth than smooth functions.
• Unlike smooth functions, the gradient may not get smaller near a minimizer.

– To apply gradient descent, we’ll use a smooth approximation.

Smooth Approximations to the L1-Norm
• There are differentiable approximations to absolute value.
– Common example is Huber loss:

– Note that ‘h’ is differentiable: h’(ε) = ε and h’(-ε) = -ε.
– This ‘f’ is convex but setting 𝛻f(x) = 0 does not give a linear system.

• But we can minimize the Huber loss using gradient descent.

Very Robust Regression

• Non-convex errors can be very robust:
– Not influenced by outlier groups.

Very Robust Regression

• Non-convex errors can be very robust:
– Not influenced by outlier groups.
– But non-convex, so finding

global minimum is hard.
– Absolute value is “most robust”

convex loss function.

Motivation for Modeling Outliers

https://xkcd.com/937/

• What if the “outlier” is the only non-male person in your dataset?
– Do you want to be robust to the outlier?
– Will the model work for everyone if it has good average case performance?

“Brittle” Regression
• What if you really care about getting the outliers right?
– You want to minimize size of worst error across examples.

• For example, if in worst case the plane can crash.

• In this case you could use something like the infinity-norm:

• Very sensitive to outliers (“brittle”), but minimizes worst (highest)
errors.

Log-Sum-Exp Function
• As with the L1-norm, the L∞-norm is convex but non-smooth:

– We can again use a smooth approximation and fit it with gradient descent.

• Convex and smooth approximation to max function is log-sum-exp function:

– We’ll use this several times in the course.
– Notation reminder: when I write “log” I always mean “natural” logarithm: log(e) = 1.

• Intuition behind log-sum-exp:
– ∑𝑖 exp 𝑧! ≈ max

!
exp(𝑧!), as largest element is magnified exponentially (if no ties).

– And notice that log(exp(zi)) = zi.

Log-Sum-Exp Function Examples
• Log-sum-exp function as smooth approximation to max:

• If there aren’t “close” values, it’s really close to the max.

• Comparison of max{0,w} and smooth log(exp(0) + exp(w)):

Recap of Part 3

Linear Models, Least Squares
• Focus of Part 3 is linear models:
– Supervised learning where prediction is linear combination of features:

• Regression:
– Target yi is numerical, testing ((𝑦i == yi) doesn’t make sense.

• Squared error:

– Can find optimal ‘w’ by solving “normal equations”.

Change of Basis, Gradient Descent
• Change of basis: replaces features xi with non-linear transforms zi:
– Add a bias variable (feature that is always one).
– Polynomial basis.
– Other basis functions (logarithms, trigonometric functions, etc.).

• For large ‘d’ we often use gradient descent:
– Iterations only cost O(nd).
– Converges to a critical point of a smooth function.
– For convex functions, it finds a global optimum.

Error Functions, Smoothing
• Error functions:
• Squared error is sensitive to outliers.
• Absolute (L1) error and Huber error are more robust to outliers.
• Brittle (L∞) error is more sensitive to outliers.

• L1 and L∞ error functions are convex but non-differentiable:
• Finding ‘w’ minimizing these errors is harder than squared error.

• We can approximate these with differentiable functions:
• L1 can be approximated with Huber.
• L∞ can be approximated with log-sum-exp.

• With these smooth (convex) approximations,
we can find global optimum with gradient descent.

Finding the “True” Model
• What if our goal is find the “true” model?
– We believe that yi really is a polynomial function of xi.
– We want to find the degree of the polynomial ‘p’.

• Should we choose the ‘p’ with the lowest training error?
– No, this will pick a ‘p’ that is way too large.

(training error always decreases as you increase ‘p’)

Finding the “True” Model
• What if our goal is find the “true” model?
– We believe that yi really is a polynomial function of xi.
– We want to find the degree of the polynomial ‘p’.

• Should we choose the ‘p’ with the lowest validation error?
– This will also often choose a ‘p’ that is too large.

– Even if true model has p=2, this is a special case of a degree-3 polynomial.
– If ‘p’ is too big then we overfit, but might still get a lower validation error.

Complexity Penalties
• There are a lot of “scores” people use to find the “true” model.
• Basic idea behind them: put a penalty on the model complexity.
– Want to fit the data and have a simple model.

• For example, minimize training error plus the degree of polynomial.

– If we use p=4, use “training error plus 4” as error.

• If two ‘p’ values have similar error, this prefers the smaller ‘p’.

Choosing Degree of Polynomial Basis
• How can we optimize this score?

– Form Z0, solve for ‘v’, compute score(0) = ½||Z0v – y||2 + 0.
– Form Z1, solve for ‘v’, compute score(1) = ½||Z1v – y||2 + 1.
– Form Z2, solve for ‘v’, compute score(2) = ½||Z2v – y||2 + 2.
– Form Z3, solve for ‘v’, compute score(3) = ½||Z3v – y||2 + 3.

– Choose the degree with the lowest score.
• “You need to decrease training error by at least 1 to increase degree by 1.”

Information Criteria
• There are many scores, usually with the form:

– The value ‘k’ is the “number of estimated parameters” (“degrees of freedom”).
• For polynomial basis, we have k = p + 1.

– The parameter λ > 0 controls how strong we penalize complexity.
• “You need to decrease the training error by least λ to increase ‘k’ by 1”.

• Using (λ = 1) is called Akaike information criterion (AIC).
• Other choices of λ (not necessarily integer) give other criteria:
– Mallow’s Cp.
– Adjusted R2.
– ANOVA-based model selection.

Naming something after yourself without being gauche

https://statmodeling.stat.columbia.edu/2013/08/09/understanding-predictive-information-criteria-for-bayesian-models/

https://statmodeling.stat.columbia.edu/2013/08/09/understanding-predictive-information-criteria-for-bayesian-models/

Choosing Degree of Polynomial Basis
• How can we optimize this score in terms of ‘p’?

– Form Z0, solve for ‘v’, compute score(0) = ½||Z0v – y||2 + λ.
– Form Z1, solve for ‘v’, compute score(1) = ½||Z1v – y||2 + 2λ.
– Form Z2, solve for ‘v’, compute score(2) = ½||Z2v – y||2 + 3λ.
– Form Z3, solve for ‘v’, compute score(3) = ½||Z3v – y||2 + 4λ.

– So we need to improve by “at least λ” to justify increasing degree.
• If λ is big, we’ll choose a small degree. If λ is small, we’ll choose a large degree.

Summary
• Outliers in ‘y’ can cause problem for least squares.
• Robust regression using L1-norm is less sensitive to outliers.
• Brittle regression using Linf-norm is more sensitive to outliers.
• Smooth approximations:
– Let us apply gradient descent to non-smooth functions.
– Huber loss is a smooth approximation to absolute value.
– Log-Sum-Exp is a smooth approximation to maximum.

• Information criteria are scores that penalize number of parameters.
– When we want to find the “true” model.

• Next time:
– Can we find the “true” features?

Random Sample Consensus (RANSAC)
• In computer vision, a widely-used generic framework for robust

fitting is random sample consensus (RANSAC).
• This is designed for the scenario where:
– You have a large number of outliers.
– Majority of points are “inliers”:

it’s really easy to get low error on them.

https://en.wikipedia.org/wiki/Random_sample_consensus

Random Sample Consensus (RANSAC)
• RANSAC:
– Sample a small number of training examples.

• Minimum number needed to fit the model.
• For linear regression with 1 feature, just 2 examples.

– Fit the model based on the samples.
• Fit a line to these 2 points.
• With ‘d’ features, you’ll need ‘d+1’ examples.

– Test how many points are fit well
based on the model.

– Repeat until we find a model that fits at
least the expected number of “inliers”.

• You might then re-fit based on the
estimated “inliers”.

https://en.wikipedia.org/wiki/Random_sample_consensus

Log-Sum-Exp for Brittle Regression
• To use log-sum-exp for brittle regression:

Log-Sum-Exp Numerical Trick
• Numerical problem with log-sum-exp is that exp(zi) might overflow.
– For example, exp(100) has more than 40 digits.

• Implementation ‘trick’:

Gradient Descent for Non-Smooth?

• “You are unlikely to land on a non-smooth point, so gradient descent
should work for non-smooth problems?”
– Consider just trying to minimize the absolute value function:

– Norm(gradient) is constant when not at 0, so unless you are lucky enough to hit
exactly 0, you will just bounce back and forth forever.

– We didn’t have this problem for smooth functions, since the gradient gets
smaller as you approach a minimizer.

– You could fix this problem by making the step-size slowly go to zero, but you
need to do this carefully to make it work, and the algorithm gets much slower.

Gradient Descent for Non-Smooth?
• Counter-example from Bertsekas’ “Nonlinear Programming” where

gradient descent for a non-smooth convex problem does not
converge to a minimum.

Example: Convexity of Linear Regression (Hard Way)

• Consider linear regression objective with squared error:

• Twice-differentiable ‘f’ is convex if 𝛻+ 𝑓(𝑥) has eigenvalues ≥ 0.
– This is equivalent to saying 𝑣!𝛻"𝑓 𝑥 𝑣 ≥ 0 for all vectors 𝑣.

• The Hessian for least squares is 𝛻+𝑓 𝑥 = 𝑋,𝑋.
– See notes on Gradients and Hessians of quadratics on webpage.

• We have:

