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Last Time: Classification using Regression and SVMs
• Binary classification using sign of linear models:

• We considered different training “error” functions:
– Squared error: (wTxi – yi)2.

• If yi = +1 and wTxi = +100, then squared error (wTxi – yi)2 is huge.
– 0-1 classification error: (sign(wTxi) = yi)?

• Non-convex and hard to minimize in terms of ‘w’ (unless optimal error is 0).
– Degenerate convex approximation to 0-1 error: max{0,-yiwTxi}.

• Has a degenerate solution of 0.
– Hinge loss: max{0, 1 - yiwTxi}.

• Convex upper bound on number of classification errors (the 0-1 loss).
• With L2-regularization, it’s called a support vector machine (SVM).



‘λ’ vs ‘C’ as SVM Hyper-Parameter
• We’ve written SVM in terms of regularization parameter ‘λ’:

• Some software packages instead have regularization parameter ‘C’:

• In our notation, this corresponds to using λ = 1/C.
– Equivalent to just multiplying f(w) by constant.
– Note interpretation of ‘C’ is different: high regularization for small ‘C’.

• You can think of ‘C’ as “how much to focus on the classification error”.



Logistic Loss
• We can smooth max the degenerate loss with log-sum-exp:

• Summing over all examples gives:

• This is the “logistic loss” and model is called “logistic regression”.
– It’s not degenerate: w=0 now gives an error of log(2) instead of 0.
– Convex and differentiable: minimize this with gradient descent.
– You should also add regularization.
– We’ll see later that it has a probabilistic interpretation.



Convex Approximations to 0-1 Loss



Logistic Regression and SVMs
• Logistic regression and SVMs are used EVERYWHERE!
– Fast training and testing.

• Training on huge datasets using “stochastic” gradient descent (next week).
• Prediction is just computing wT xi.

– Weights wj are easy to understand. 
• It’s how much wj changes the prediction and in what direction.

– We can often get a good test error.
• With regularization

– Smoother predictions than random forests.



Comparison of “Black Box” Classifiers
• Fernandez-Delgado et al. [2014]:
– “Do we Need Hundreds of Classifiers to Solve Real World Classification 

Problems?”

• Compared 179 classifiers on 121 datasets.
• Random forests are most likely to be the best classifier.
• Next best class of methods was SVMs (L2-regularization, RBFs).

• “Why should I care about logistic regression if I know about deep 
learning?”

https://www.quora.com/Why-should-I-care-about-logistic-regression-if-I-know-about-deep-learning


(pause)



Maximum-Margin Perspective
• Consider a linearly-separable dataset.



Maximum-Margin Perspective
• Consider a linearly-separable dataset.
– Perceptron algorithm finds some classifier with zero error.
– But are all zero-error classifiers equally good?
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Maximum-Margin Perspective
• For linearly-separable data:

• With small-enough λ > 0, SVMs find the maximum-margin classifier.
– Need λ small enough that hinge loss is 0 in solution.
– Origin of the name: the “support vectors” are the points closest to the line (see bonus).

• More recent result: logistic regression also finds maximum-margin classifier.
– With λ=0 and if you fit it with gradient descent (not true for many other optimizers).



(pause)



Previously: Identifying Important E-mails
• Recall problem of identifying ‘important’ e-mails:

• We can do binary classification by taking sign of linear model:

– Convex loss functions (hinge/logistic loss) let us find an appropriate ‘w’.

• But what if we want a probabilistic classifier?
– Want a model of p(yi = “important” | xi) for use in decision theory.



Predictions vs. Probabilities
• With zi = wTxi, linear classifiers make prediction using sign(zi):

• For predictions, “sign” maps from wTxi to the elements {-1,+1}.
– If wTxi is positive we predict +1, if it’s negative we predict -1.

• For probabilities, we want to map from wTxi to the range [0,1].
– If wTxi is very positive, we output a value close to +1.
– If wTxi is very negative, we output a value close to 0.
– If wTxi is close to 0, we output a value close to 0.5.



• So we want a transformation of zi = wTxi that looks like this:

• The most common choice is the sigmoid function:

• Values of h(zi) match what we want:

Sigmoid Function



Probabilities for Linear Classifiers using Sigmoid 
• Using sigmoid function, we output probabilities for linear models using:

• Visualization for 2 features:
https://www.youtube.com/watch?v=Zc7ouSD0DEQ



Probabilities for Linear Classifiers using Sigmoid 
• Using sigmoid function, we output probabilities for linear models using:

• By rules of probability:

• We then use these for “probability that e-mail is important”.
• This may seem heuristic, but later we’ll see that:
– minimizing logistic loss does “maximum likelihood estimation” in this model.



(pause)



Multi-Class Linear Classification
• We’ve been considering linear models for binary classification:

• E.g., is there a cat in this image or not?

https://www.youtube.com/watch?v=tntOCGkgt98



Multi-Class Linear Classification
• Now we’ll discuss linear models for multi-class classification:

• For example, classify image as “cat”, “dog”, or “person”.
– This was natural for methods of Part 1 (decision trees, naïve Bayes, KNN).
– For linear models, we need some new notation.



“One vs All” Classification
• Suppose you only know how to do binary classification:
– “One vs all” is a way to turn a binary classifier into a multi-class method.

• Training phase:
– For each class ‘c’, train binary classifier to predict whether example is a ‘c’.

• For example, train a “cat detector”, a “dog detector”, and a “human detector”.
• If we have ‘k’ classes, this gives ‘k’ binary classifiers .

• Prediction phase:
– Apply the ‘k’ binary classifiers to get a “score” for each class ‘c’.
– Predict the ‘c’ with the highest score.



“One vs All” Linear Classification
• “One vs all” logistic regression for classifying as cat/dog/person.
– Train a separate classifier for each class.

• Classifier 1 tries to predict +1 for “cat” images and -1 for “dog” and “person” images.
• Classifier 2 tries to predict +1 for “dog” images and -1 for “cat” and “person” images.
• Classifier 3 tries to predict +1 for “person” images and -1 for “cat” and “dog” images.

– This gives us a weight vector wc for each class ‘c’:
• Weights wc try to predict +1 for class ‘c’ and -1 for all others.
• We’ll use ‘W’ as a matrix with the wc as rows:



“One vs All” Linear Classification
• “One vs all” logistic regression for classifying as cat/dog/person.
– Prediction on example xi given parameters ‘W’ :

– For each class ‘c’, compute wc
Txi.

• Ideally, we’ll get sign(wc
Txi) = +1 for one class and sign(wc

Txi) = -1 for all others.
• In practice, it might be +1 for multiple classes or no class.

– To predict class, we take maximum value of wc
Txi (“highest score”).

• In the example above, predict “human” (0.9 is higher than -0.8 and -0.1).



Shape of Decision Boundaries
• Recall that a binary linear classifier splits space using a hyper-plane:

• Divides xi space into 2 “half-spaces”.



Shape of Decision Boundaries
• Multi-class linear classifier is intersection of these “half-spaces”:
– This divides the space into convex regions (like k-means):



Shape of Decision Boundaries
• Multi-class linear classifier is intersection of these “half-spaces”:
– Though regions could be non-convex with non-linear feature transforms:



Digression: Multi-Label Classification
• A related problem is multi-label classification:

• Which of the ‘k’ objects are in this image?
– There may be more than one “correct” class label.
– Here we can also fit ‘k’ binary classifiers.

• But we would take all the sign(wc
Txi)=+1 as the labels.

http://image-net.org/challenges/LSVRC/2013/



Multi-Class Linear Classification (MEMORIZE)
• Back to multi-class classification where we have 1 “correct” label:

• ‘    ’ is the classifier for c=yi (row of correct class label).
– So if yi=2 then       = w2.



“One vs All” Multi-Class Linear Classification
• Problem: We didn’t train the wc so that the largest wc

Txi would be     Txi.
– Each classifier is just trying to get the sign right.

– Here the classifier incorrectly predicts “dog”.
• “One vs All” doesn’t try to put w2

Txi and w3
Txi on same scale for decisions like this.

• We should try to make w3
Txi positive and w2

Txi negative relative to each other. 
• The multi-class hinge loss and multi-class logistic loss do this.

https://laughingsquid.com/pug-mask-a-latex-mask-so-you-can-look-like-a-dog/



Multi-Class SVMs
• Can we define a loss that encourages largest wc

Txi to be     Txi?
– So when we maximizing over wc

Txi, we choose correct label yi.

• Recall our derivation of the hinge loss (SVMs):
– We wanted yiwTxi > 0 for all ‘i’ to classify correctly.
– We avoided non-degeneracy by aiming for yiwTxi ≥ 1.
– We used the constraint violation as our loss: max{0, 1 - yiwTxi}.

• We can derive multi-class SVMs using the same steps…



Multi-Class SVMs
• Can we define a loss that encourages largest wc

Txi to be     Txi?

• For here, there are two ways to measure constraint violation:



Multi-Class SVMs
• Can we define a loss that encourages largest wc

Txi to be     Txi?

• For each training example ‘i’:
– “Sum” rule penalizes for each ‘c’ that violates the constraint.
– “Max” rule penalizes for one ‘c’ that violates the constraint the most.

• If we add L2-regularization, both are called multi-class SVMs:
– “Max” rule is more popular, “sum” rule usually works better.
– Both are convex upper bounds on the 0-1 loss.



Summary
• Logistic loss uses a smooth convex approximation to the 0-1 loss.
• SVMs and logistic regression are very widely-used.
– A lot of ML consulting: “find good features, use L2-regularized logistic/SVM”.
– Under certain conditions, can be viewed as “maximizing the margin”. 
– Both are just linear classifiers (a hyperplane dividing into two halfspaces).

• Sigmoid function is a way to turn linear predictions into probabilities.
• One vs all turns a binary classifier into a multi-class classifier.
• Multi-class SVMs measure violation of classification constraints.

• Next time: what makes good features?



Maximum-Margin Classifier
• Consider a linearly-separable dataset.
– Maximum-margin classifier: choose the farthest from both classes.
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Maximum-Margin Classifier
• Consider a linearly-separable dataset.
– Maximum-margin classifier: choose the farthest from both classes.



Support Vector Machines
• For linearly-separable data, SVM minimizes:

– Subject to the constraints that:
(see Wikipedia/textbooks)

• But most data is not linearly separable.
• For non-separable data, try to minimize violation of constraints:



Support Vector Machines
• Try to maximizing margin and also minimizing constraint violation:

• We typically control margin/violation trade-off with parameter “λ”:

• This is the standard SVM formulation (L2-regularized hinge).
– Some formulations use λ = 1 and multiply hinge by ‘C’ (equivalent).



Support Vector Machines for Non-Separable
• Non-separable case:
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Support Vector Machines for Non-Separable
• Non-separable case:



Support Vector Machines for Non-Separable
• Non-separable case:



Discussion of Various Linear Classifiers
• Perceptron vs. logistic vs. SVM:

– These linear classifiers are all extremely similar. They are basically just variations on reasonable methods to learn a classifier that uses the 
rule $$\hat{y}_i = \text{sign}(w^Tx_i)$$. (The online vs. offline issue is a red herring, you can train logistic/SVMs online using stochastic 
gradient and you can write a linear program that will give you a minimizer of the perceptron objective).

– If you want to explore the small differences, these are some of the usual arguments:
• The perceptron has largely been replaced by logistic/SVM, except in certain subfields like theory (it is easy to prove things about perceptrons) and natural 

language processing (mostly historical reasons). Perceptrons have the potential disadvantages of non-regularized models (non-uniqueness and potential 
non-existence of the solution, potential high sensitivity to small changes in the data, and non-robustness to irrelevant features). However, perceptrons do 
not interact well with regularization: if you add L2-regularization and the dataset is linearly-separable, then the solution only exists as a limit and it is 
actually $$w=0$$ (although it may still work in practice).

• A usual criticism of logistic regression by people that favour SVMs is that, if the data is linearly separable, then the solution only exists as a limit as some 
elements $$w$$ go to plus or minus $$\infty$$. However, this argument disappears if you add regularization. A second argument traditionally made by 
SVM people is that you can't kernelize logistic regression, but this is now known to be incorrect (we'll cover a general kernelization strategy for L2-
regularized linear classifiers in one of the next two classes).

• The remaining differences between logistic and SVMs is that logistic regression is smooth while SVMs have support vectors. This means that the logistic 
regression training problem is easier from an optimization perspective (we'll get to this next class). But if you have very few support vectors, you can only 
take advantage of this with SVMs (or perceptrons), and this is especially important if you are using kernels.

• Regarding other linear predictors for binary classification, there are a few more:
– Probit regression uses the Gaussian CDF in place of the logistic sigmoid function. This has very similar properties to logistic regression, but 

it's harder to generalize to the multi-class case (while probit regression is better if you are using a “Bayesian” estimator). You could actually 
use any CDF as your sigmoid function, and if there is some asymmetry between the classes using an extreme value distribution is 
sometimes advocated in statistics.

– In neural networks, they sometimes use tanh in place of the logistic sigmoid function; the main reason to do this is to get values into the 
interval [-1,1] instead of [0,1].

– If you want to keep support vectors but get a smooth optimization problem, you can square the hinge loss (making it once but not twice 
differentiable), and this is called smooth SVMs. Alternately, you could replace the non-differentiable kink with a small smooth part, and 
this is called Huberized SVMs.

– Finally, some people actually just apply least squares to classification problems. If you use a flexible enough basis/kernel, then the 'bad' 
errors may not actually be that harmful.



Robustness and Convex Approximations
• Because the hinge/logistic grow like absolute value for mistakes, 

they tend not to be affected by a small number of outliers.



Robustness and Convex Approximations
• Because the hinge/logistic grow like absolute value for mistakes, 

they tend not to be affected by a small number of outliers.

• But performance degrades if we have many outliers.



Non-Convex 0-1 Approximations
• There exists some smooth non-convex 0-1 approximations.
– Robust to many/extreme outliers.
– Still NP-hard to minimize.
– But can use gradient descent.

• Finds “local” optimum.



“Robust” Logistic Regression
• A recent idea: add a “fudge factor” vi for each example.

• If wTxi gets the sign wrong, we can “correct” the mis-classification 
by modifying vi.
– This makes the training error lower but doesn’t directly help with test data, 

because we won’t have the vi for test data.
– But having the vi means the ‘w’ parameters don’t need to focus as much 

on outliers (they can make |vi| big if sign(wTxi) is very wrong).



“Robust” Logistic Regression
• A recent idea: add a “fudge factor” vi for each example.

• If wTxi gets the sign wrong, we can “correct” the mis-classification 
by modifying vi.

• A problem is that we can ignore the ‘w’ and get a tiny training error 
by just updating the vi variables.

• But we want most vi to be zero, so “robust logistic regression” puts 
an L1-regularizer on the vi values:

• You would probably also want to regularize the ‘w’ with different λ.



“All-Pairs” and ECOC Classification
• Alternative to “one vs. all” to convert binary classifier to multi-class is 

“all pairs”.
– For each pair of labels ‘c’ and ‘d’, fit a classifier that predicts +1 for examples of 

class ‘c’ and -1 for examples of class ‘d’ (so each classifier only trains on examples 
from two classes).

– To make prediction, take a vote of how many of the (k-1) classifiers for class ‘c’ 
predict +1.

– Often works better than “one vs. all”, but not so fun for large ‘k’.
• Need O(k2) classifiers.

• A variation on this is using “error correcting output codes” from 
information theory (see Math 342).
– Each classifier trains to predict +1 for some of the classes and -1 for others.
– You setup the +1/-1 code so that it has an “error correcting” property.

• It will make the right decision even if some of the classifiers are wrong.



Motivation: Dog Image Classification
• Suppose we’re classifying images of dogs into breeds:

• What if we have images where class label isn’t obvious?
– Siberian husky vs. Inuit dog?

https://www.slideshare.net/angjoo/dog-breed-classification-using-part-localization
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Preferences
• Do we need to throw out images where label is ambiguous?
– We don’t have the yi.

– We want classifier to prefer Siberian husky over bulldog, Chihuahua, etc.
• Even though we don’t know if these are Siberian huskies or Inuit dogs.

– Can we design a loss that enforces preferences rather than “true” labels?
https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Pairwise Preferences (Ranking)
• Instead of yi, we’re given list of (c1,c2) preferences for each ‘i’:

• Multi-class classification is special case of choosing (yi,c) for all ‘c’.

• By following the earlier steps, we can get objectives for this setting:

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements



Learning with Pairwise Preferences (Ranking)
• Pairwise preferences for computer graphics:
– We have a smoke simulator, with several parameters:

– Don’t know what the optimal parameters are, but we can ask the artist:
• “Which one looks more like smoke”?

https://circle.ubc.ca/bitstream/handle/2429/30519/ubc_2011_spring_brochu_eric.pdf?sequence=3



Learning with Pairwise Preferences (Ranking)
• Pairwise preferences for humour:
– New Yorker caption contest:

– “Which one is funnier”?

https://homes.cs.washington.edu/~jamieson/resources/next.pdf



Risk Scores
• In medicine/law/finance, risk scores are sometimes used to give probabilities:

– Get integer-valued “points” for each “risk factor”, and probability is computed from data 
based on people with same number of points.

– Less accurate than fancy models, but interpretable and can be done by hand.
• Some work on trying to “learn” the whole thing (like doing feature selection then rounding).

https://arxiv.org/pdf/1610.00168.pdf



Support Vector Regression
• Support vector regression objective (with hyper-parameter 𝜖):

– Looks like L2-regularized robust
regression with the L1-loss.

– But have loss of 0 if "𝑦! within 𝜖 of %𝑦!.
• So doesn’t try to fit data exactly.

– This can help fight overfitting.

– Support vectors are points with loss>0.
• Points outside the “epsilon-tube”.

– Example with Gaussian-RBFs as features:



1-Class SVMs
• 1-class SVMs for outlier detection.

– Variables are ‘w’ (vector) and ‘w0’ (scalar).
– Only trains on “inliers”.

• Tries to make wTxi bigger than w0 for inliers.
• At test time: says “outlier” if wTxi < w0.
• Usually used with RBFs.

– The above is a class formulation, but there are many more.

https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html


