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Last Time: Maximum Likelihood Estimation (MLE)

 Maximum likelihood estimation (MLE):

— Define a likelihood function, probability of data given parameters: p(D |
wW).

— Choose parameters ‘w’ to maximize the likelihood.

* Typically easier to equivalently minimize negative log-likelihood
(NLL).
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— This will turns product of probability over [ID examples into sum over
examples.



Minimizing the Negative Log-Likelihood (NLL)

 We use log-likelihood because it turns multiplication into addition:

o9 (o« B) = log(«)+ log ()
 More generally: l(ﬁ(ﬁ,q,) = _ﬁ ),,9(%)
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Least Squares is Gaussian MLE (Gory Details)

* Let’s assume thaty, = w'x, + €, with g, following standard normal:
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* This leads to a Gaussian Ilkellhood for example i” of the form:
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* Finding MILE (minimizing NLL) is least squares:
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Digression: “Generative” vs. “Discriminative”

Notice, that we maximized conditional p(y | X, w), not the likelihood p(y, X | w).
— We did MLE “conditioned” on the features ‘X’ being fixed (no “likelihood of X”).

— This is called a “discriminative” supervised learning model.
— A “generative” model (like naive Bayes) would optimize p(y, X | w).

Discriminative probabilistic models:
— Least squares, robust regression, logistic regression.
— Can use complicated features because you don’t model ‘X..

Example of generative probabilistic models:
— Naive Bayes, linear discriminant analysis (makes Gaussian assumption).
— Often need strong assumption because they model ‘X.

“Folk” belief: generative models are often better with small ‘n’.



Loss Functions and Maximum Likelihood Estimation
* So least squares is MLE under Gaussian likelihood.
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* With a Laplace likelihood you would get absolute error.
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e Other likelihoods lead to different errors (“sigmoid” -> logistic loss).
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“Heavy” Tails vs. “Light” Tails

e We know that L1-norm is more robust than L2-norm.

— What does this mean in terms of probabilities?
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— Gaussian has “light tails”: assumes everything is close to mean.
— Laplace has “heavy tails”: assumes some data is far from mean.
— Student ‘t’ is even more heavy-tailed/robust, but NLL is non-convex.



Sigmoid: transforming w'x; to a Probability

* Recall we got probabilities from binary linear models with sigmoid:

1. The linear model w'x; gives us a number in z; (-oo, =°).
2. WEe'll map z=w'x; to a probability with the sigmoid function.
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 We can show that MLE with this model gives logistic loss.



Sigmoid: transforming w'x; to a Probability

* We'll define p(y; =+1 | z;) = h(z;), where ‘h’ is the sigmoid function.
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 Withy, in{-1,+1}, we can write both cases as p(y; | z) = h(y.z).
* So we convert z=w'x; into “probability of y,” using:
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 MLE with this likelihood is equivalent to minimizing logistic loss.



MLE Interpretation of Logistic Regression

* For lID regression problems the condltlonal NLL can be written:
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 Logistic regression assumes sigmoid(w'x;) conditional likelihood:

F(y' )X))W) - l'\(y',WTX"> Wh{/c h(zl_>__—_

* Plugging in the sigmoid
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ikelihood, the NLL is the logistic loss:
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MLE Interpretation of Logistic Regression

* We just derived the logistic loss from the perspective of MLE.

— Instead of “smooth convex approximation of 0-1 loss”, we now have that
logistic regression is doing MLE in a probabilistic model.

— The training and prediction would be the same as before.

e We still minimize the logistic loss in terms of ‘w’.

— But MLE justifies sigmoid for “probability that e-mail is important”:
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— Similarly, NLL under the softmax likelihood is the softmax loss (for multi-class).



(pause)



Maximum Likelihood Estimation and Overfitting
In our abstract setting with data D the MLE is:
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But conceptually MLE is a bit weird:
— “Find the ‘W’ that makes ‘D’ have the highest probability given ‘w’.”

And MLE often leads to overfitting:

— Data could be very likely for some very unlikely ‘w’.
— For example, a complex model that overfits by memorizing the data.

What we really want:
— “Find the ‘W’ that has the highest probability given the data D.”



Maximum a Posteriori (MAP) Estimation

e Maximum a posteriori (MAP) estimate maximizes the reverse probability:
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— This is what we want: the probability of ‘w’ given our data.

* MLE and MAP are connected by Bayes rule:
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 So MAP maximizes the likelihood p(D|w) times the prior p(w):
— Prioris our “belief” that ‘w’ is correct before seeing data.

— Prior can reflect that complex models are likely to overfit.



MAP Estimation and Regularization

* From Bayes rule, the MAP estimate with IID examples D, is:
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* By again taking the negative of the logarithm as before we get:
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* So we can view the negative log-prior as a regularizer:

— Many regularizers are equivalent to negative log-priors.



L2-Regularization and MAP Estimation

We obtain L2-regularization under an independent Gaussian assumption:
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MAP Estimation and Regularization

 MAP estimation gives link between probabilities and loss functions.
— Gaussian likelihood (o = 1) + Gaussian prior gives L2-regularized least squares.
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— Laplace likelihood (o = 1) + Gaussian prior give L2-regularized robust regression:
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— As ‘n’ goes to infinity, effect of prior/regularizer goes to zero.

— Unlike with MLE, the choice of o changes the MAP solution for these models.



Summarizing the past few slides

* Many of our loss functions and regularizers have probabilistic interpretations.
— Laplace likelihood leads to absolute error.
— Laplace prior leads to L1-regularization.

* The choice of likelihood corresponds to the choice of loss.

— Our assumptions about how the y;-values can come from the x; and ‘w’.

* The choice of prior corresponds to the choice of regularizer.
— Our assumptions about which ‘w’ values are plausible.
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Regularizing Other Models

* We can view priors in other models as regularizers.

* Remember the problem with MLE for naive Bayes:
* The MLE of p(‘lactase’ = 1| ‘spam’) is: count(spam,lactase)/count(spam).
e But this caused problems if count(spam,lactase) = 0.

* Our solution was Laplace smoothing:

— Add “+1” to our estimates: (count(spam,lactase)+1)/(counts(spam)+2).
— This corresponds to a “Beta” prior so Laplace smoothing is a regularizer.



(pause)
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Why do we care about MLE and MAP? —

e Unified way of thinking about many of our tricks?

— Probabilitic interpretation of logistic loss.
— Laplace smoothing and L2-regularization are doing the same thing.

e Remember our two ways to reduce overfitting in complicated models:

— Model averaging (ensemble methods).
— Regularization (linear models).

* “Fully”-Bayesian methods (CPSC 440, 532W) combine both of these.

— Average over all models, weighted by posterior (including regularizer).
— Can use extremely-complicated models without overfitting.



Losses for Other Discrete Labels

MLE/MAP gives loss for classification with basic labels:
— Least squares and absolute loss for regression.

)

— Logistic regression for binary labels {“spam”, “not spam”}.
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— Softmax regression for multi-class {“spam”, “not spam”, “important”}.

But MLE/MAP lead to losses with other discrete labels (bonus):
— Ordinal: {1 star, 2 stars, 3 stars, 4 stars, 5 stars}.

— Counts: 602 ‘likes’.

— Survival rate: 60% of patients were still alive after 3 years.

— Unbalanced classes: 99.9% of examples are classified as +1.

Define likelihood of labels, and use NLL as the loss function.

We can also use ratios of probabilities to define more losses (bonus):
— Binary SVMs, multi-class SVMs, and “pairwise preferences” (ranking) models.
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End of Part 3: Key Concepts

* Linear models predict based on linear combination(s) of features:
T
WX = wixy Twgxa ™ v xy
* We model non-linear effects using a change of basis:

— Replace d-dimensional x; with k-dimensional z; and use v'z..
— Examples include polynomial basis and (non-parametric) RBFs.

* Regression is supervised learning with continuous labels.

— Logical error measure for regression is squared error:

w) = ‘i“)(w"yul

— Can be solved as a system of linear equations.



End of Part 3: Key Concepts

Gradient descent finds local minimum of smooth objectives.
— Converges to a global optimum for convex functions.

— Can use smooth approximations (Huber, log-sum-exp)

Stochastic gradient methods allow huge/infinite ‘n’.

— Though very sensitive to the step-size.

Kernels let us use similarity between examples, instead of features.
— Lets us use some exponential- or infinite-dimensional features.
Feature selection is a messy topic.

— Classic method is forward selection based on LO-norm.
— L1-regularization simultaneously regularizes and selects features.



End of Part 3: Key Concepts

* We can reduce over-fitting by using regularization:

) = 3 I =y I+ 21

e Squared error is not always right measure:
— Absolute error is less sensitive to outliers.
— Logistic loss and hinge loss are better for binary vy..
— Softmax loss is better for multi-class y..

* MLE/MAP perspective:

— We can view loss as log-likelihood and regularizer as log-prior.
— Allows us to define losses based on probabilities.



The Story So Far...

Part 1: Supervised Learning.
— Methods based on counting and distances.

Part 2: Unsupervised Learning.
— Methods based on counting and distances.

Part 3: Supervised Learning (just finished).
— Methods based on linear models and gradient descent.

Part 4: Unsupervised Learning (next time).
— Methods based on linear models and gradient descent.



Summary

Maximum likelihood estimate viewpoint of common models.

— Objective functions are equivalent to maximizing p(y, X | w) or p(y | X, w).

MAP estimation directly models p(w | X, y).
— Gives probabilistic interpretation to regularization.

Losses for weird scenarios are possible using MLE/MAP:

— Ordinal labels, count labels, censored labels, unbalanced labels.

Next time:

— What ‘parts’ are your personality made of?
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Discussion: Least Squares and Gaussian Assumption

Classic justifications for the Gaussian assumption underlying least squares:

— Your noise might really be Gaussian. (It probably isn't, but maybe it's a good enough
approximation.)

— The central limit theorem (CLT) from probability theory. (If you add up enough IID
random variables, the estimate of their mean converges to a Gaussian distribution.)

| think the CLT justification is wrong as we've never assumed that the x; are IID across j’
values. We only assumed that the examples x; are 11D across ‘i’ values, so the CLT implies
that our estimate of ‘w’ would be a Gaussian distribution under different samplings of
the data, but this says nothing about the distribution of y, given w'x..

On the other hand, there are reasons *not™ to use a Gaussian assumption, like it's
sensitivity to outliers. This was (apparently) what lead Laplace to propose the Laplace
distribution as a more robust model of the noise.

The "student t" distribution (published anonymously by Gosset while working at the
Guiness beer company) is even more robust, but doesn't lead to a convex objective.
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Binary vs. Multi-Class Logistic -
* How does multi-class logistic generalize the binary logistic model?
* We can re-parameterize softmax in terms of (k-1) values of z:

03()’/2'722)"')zk-:>$§’:f(7‘l) f y?«‘/\’ and f)(‘//Z;%szA-,)a_M'\__ ;{y:/\’
l-IZ,EXP(ZJ 142 enlz,)

— This is due to the “sum to 1” property (one of the z. values is redundant).

— So if k=2, we don’t need a z, and only need a single ‘Z".
— Further, when k=2 the probabilities can be written as:
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— Renaming 2’ as -1’, we get the binary logistic regression probabilities.
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Ordinal Labels -

* Ordinal data: categorical data where the order matters:

— Rating hotels as {1 star’, ‘2 stars’, ‘3 stars’, ‘4 stars’, ‘5 stars’}.

— Softmax would ignore order.

* Can use ‘ordinal logistic regression’.
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Count Labels

Count data: predict the number of times something happens.

— For example, y; = “602” Facebook likes.

Softmax requires finite number of possible labels.

We probably don’t want separate parameter for ‘654’ and ‘655",
Poisson regression: use probability from Poisson count distribution.

— Many variations exist, a lot of people think this isn’t the best likelihood.
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Censored Survival Analysis (Cox Partial Likelihood)

Censored survival analysis:

— Target y, is last time at which we know person is alive.
* But some people are still alive (so they have the same vy, values).
e The y, values (time at which they die) are “censored”.

— We use v;=0 is they are still alive and otherwise we set v, = 1.

Cox partial likelihood assumes “instantaneous” rate of dying depends on
x; but not on total time they’ve been alive (not that realistic). Leads to
likelihood of the “censored” data of the form:

byt Lty w) = exploiws Yesp(~ yempluke)

There are many extensions and alternative likelihoods.
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Other Parsimonious Parameterizations

* Sigmoid isn’t the way to model a binary p(y; | x;, w):
— Probit (uses CDF of normal distribution, very similar to logistic).
— Noisy-Or (simpler to specify probabilities by hand).
— Extreme-value loss (good with class imbalance).

— Cauchit, Gosset, and many others exist...
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Unbalanced Training Sets

* Consider the case of binary classification where your training set has
99% class -1 and only 1% class +1.

— This is called an “unbalanced” training set
 Question: is this a problem?

 Answer: it depends!
— If these proportions are representative of the test set proportions, and you care
about both types of errors equally, then “no” it’s not a problem.
* You can get 99% accuracy by just always predicting -1, so ML can only help with the 1%.

— But it’s a problem if the test set is not like the training set (e.g. your data
collection process was biased because it was easier to get -1’s)

— It’s also a problem if you care more about one type of error, e.g. if mislabeling a
+1 as a -1 is much more of a problem than the opposite
* For example if +1 represents “tumor” and -1 is “no tumor”



bonus,‘
Unbalanced Training Sets

* This issue comes up a lot in practice!

 How to fix the problem of unbalanced training sets?

— Common strategy is to build a “weighted” model:
* Put higher weight on the training examples with y;=+1.

n
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* This is equivalent to replicating those examples in the training set.
* You could also subsample the majority class to make things more balanced.
* Boostrap: create a dataset of size ‘n’ where n/2 are sampled from +1, n/2 from -1.

— Another approach is to try to make “fake” data to fill in minority class.

— Another option is to change to an asymmetric loss function (next slides)
that penalizes one type of error more than the other.

— Some discussion of different methods here.


https://www.quora.com/In-a-supervised-learning-problem-what-are-some-effective-techniques-that-can-deal-with-highly-imbalanced-datasets
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Unbalanced Data and Extreme-Value Loss

* Consider binary case where:

— One class overwhelms the other class (‘unbalanced’ data).
— Really important to find the minority class (e.g., minority class is tumor).
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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Unbalanced Data and Extreme-Value Loss

e Extreme-value distribution:
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:

— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:
— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:

— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
— Example: sigmoid => hinge.

’)(y,"X- ) (5.4 QXI)(:% /\'W-‘X;>

chﬂﬁe’j @X'O( ywx) >P

eﬂr("ywr) X;’Pﬁ Z | Gf we chose
Talte 'gg, \,} l°9(ﬂ’):/>

(2yw'*) _
oy ( 22 Jv >7'09(F) S Lywk 4+ 1yl 7 o )

exp (73 yiw )



Ioon U\S.(

/_\

Loss Functions from Probability Ratios

 We've seen that loss functions can come from probabilities:

— Gaussian => squared loss, Laplace => absolute loss, sigmoid => logistic.

* Most other loss functions can be derived from probability ratios.
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— Example: sigmoid => hinge.
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Loss Functions from Probability Ratios

* General approach for defining losses using probability ratios:

1. Define constraint based on probability ratios.
2. Minimize violation of logarithm of constraint.

* Example: softmax => multi-class SVMs.
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Supervised Ranking with Pairwise Preferences

* Ranking with pairwise preferences:

— We aren’t given any explicit y; values.
— Instead we're given list of objects (i,j) where y; > y;.
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