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Admin

e A5 due this Friday (midnight)
* Final exam format will be similar to the midterm. Online (Canvas).



Last Few Lectures: Latent-Factor Models

 We've been discussing latent-factor models of the form:
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 We get different models under different conditions:
— K-means: each z, has one ‘1’ and the rest are zero.

— Least squares: we only have one variable (d=1) and the z, are fixed.
— PCA: no restrictions on W or Z.

* Orthogonal PCA (usual case): the rows w, have norm 1 and inner products of zero.

— NMF: all elements of W and Z are non-negative.



Variations on Latent-Factor Models

 We can use all our tricks for linear regression in this context:
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* Absolute Ioss gives robust PCA that is less sensitive to outliers.

* We can use L2-regularization.
— Though only reduces overfitting if we regularize both ‘W’ and ‘Z’.

* We can use L1-regularization to give sparse latent factors/features.

* We can use logistic/softmax/Poisson losses for discrete X
* Can use change of basis to learn non-linear latent-factor models.
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Application: Image Restoration
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Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:
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Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:

Typical pre-processing:

1. Usual variable centering
2. “Whiten” patches.
(remove correlations - bonus)
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Latent-Factor Models for Image Patches

Orthogonal bases don’t seem right:
 Few PCs do almost everything.
 Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:

(b) Principal components. ‘Gabor’ filters

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-ope ncv-and-gabor-filters
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Latent-Factor Models for Image Patches

e Results from a “sparse” (hon-orthogonal) latent factor model:
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(a) With centering - gray. (b) With centering - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
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Latent-Factor Models for Image Patches

e Results from a “sparse” (non-orthogonal) latent-factor model:

(c¢) With whitening - gray. (d) With whitening - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



bon U&S,‘

Recent Work: Structured Sparsity

e Basis learned with a variant of “structured sparsity”:
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(b) With 4 x 4 neighborhood.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf



* For modeling data as combinations of non-negative parts,
NMF has largely been replaced by “topic models”.
— A “fully-Bayesian” model where sparsity arises naturally.
— Most popular example is called “latent Dirichlet allocation” (CPSC 440).

Topic proportions and

Beyond NMF: Topic Models
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(pause)



Recommender System Motivation: Netflix Prize

 Netflix Prize:

— 100M ratings from 0.5M users on 18k movies.
— Grand prize was S1M for first team to reduce squared error by 10%.
— Started on October 2" 2006.

— Netflix’s system was first beat October 8th,

— 1% error reduction achieved on October 15t,
— Steady improvement after that.

* ML methods soon dominated.

— One obstacle was ‘Napoleon Dynamite’ problem:
* Some movie ratings seem very difficult to predict.
* Should only be recommended to certain groups.




Lessons Learned from Netflix Prize

* Prize awarded in 2009:

— Ensemble method that averaged 107 models.
— Increasing diversity of models more important than improving models.
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* Winning entry (and most entries) used collaborative filtering:
— Methods that only looks at ratings, not features of movies/users.

* Asimple collaborative filtering method that does really well (7%):
— “Regularized matrix factorization”. Now adopted by many companies.



Motivation: Other Recommender Systems

* Recommender systems are now everywhere:

— Music, news, books, jokes, experts, restaurants, friends, dates, etc.

 Main types of approaches:
1. Content-based filtering.

e Supervised learning:
— Extract features x; of users and items, building model to predict rating y, given x.
— Apply model to prediction for new users/items.

) o

* Example: G-mail’s “important messages” (personalization with “local” features).

2. Collaborative filtering.

e “Unsupervised” learning (have label matrix Y’ but no features):
— We only have labels y; (rating of user ‘i’ for movie j’).

 Example: Amazon recommendation algorithm.



Collaborative Filtering Problem

* Collaborative filtering is “filling in” the user-item matrix:
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* We have some ratings available with values {1, 2, 3, 4, 5}.

* We want to predict ratings “?” by looking at available ratings.



Collaborative Filtering Problem

* Collaborative filtering is “filling in” the user-item matrix:
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 What rating would “Ryan Reynolds” give to “Green Lantern”?
— Why is this not completely hopeless? It could be anything.
— But we may have similar users and movies.



Matrix Factorization for Collaborative Filtering

Our standard latent-factor model for entries in matrix ‘Y’:

Y/’V"ZW y.\)%<w’)z,>
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User ‘i’ has latent features z..

Movie ‘]’ has latent features wi.
Our loss functions sums over available ratings ‘R’:
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And we add L2-regularization to both types of features.

— Basically, this is regularized PCA on the available entries of .
— Typically fit with SGD.

This simple method gives you a 7% improvement on the Netflix problem.
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Adding Global/User/Movie Biases -

e Qur standard latent-factor model for entries in matrix ‘Y’:
N\ < \)-
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* Sometimes we don’t assume the y; have a mean of zero:
— We could add bias reflectlng average overall rating:
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— We could also add a user-specific bias B; and item-specific bias (3;.
N .
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* Some users are more generous, and some movies are just better.
* These might also be regularized.



Beyond Accuracy in Recommender Systems

* Winning system of Netflix Challenge was never adopted.

e Other issuesimportant in recommender systems:

— Diversity: how different are the recommendations?
* If you like ‘Battle of Five Armies Extended Edition’, recommend ‘Battle of Five Armies’?
* Even if you really really like Star Wars, you might want non-Star-Wars suggestions.

— Persistence: how long should recommendations last?  [ikeidatihtdn

v Similar to games you've played:

* If you keep not clicking on “Justice League’, should it go away? |EEsEG—__i Y ST

— Trust: tell user why you made a recommendation.
— Social recommendation: what did your friends watch?

— Freshness: people tend to get more excited about
new/surprising things.

* Collaborative filtering does not predict well for new users/movies.

— New movies don’t yet have ratings, and new users haven’t rated anything.

v’ User reviews: Very Positive

() 1 friend wants this game:



Content-Based vs. Collaborative Filtering

* Our latent-factor approach to collaborative filtering (Part 4):
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— Learns about each user/movie, but can’t predict on new users/movies.

* Alinear model approach to content-based filtering (Part 3):
N
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— Here x; is a vector of features for the movie/user.

* Usual supervised learning setup: ‘y’ would contain all the y;;, X would have x; as rows.
— Can predict on new users/movies, but can’t learn about each user/movie.
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Hybrid Approaches

* Hybrid approaches combine content-based/collaborative filtering:
— SVDfeature (won “KDD Cup” in 2011 and 2012).
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— Note that x; is a feature vector. Also, ‘w’ and ‘w)’ are different parameters.
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Stochastic Gradient for SVDfeature -

e Common approach to fitting SVDfeature is stochastic gradient.

* Previously you saw stochastic gradient for supervised learning:
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e Stochastic gradient for SVDfeature (formulas as bonus):
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. . . bonus_[
Social Regularization

* Many recommenders are now connected to social networks.

— “Login using your Facebook account”.

* Often, people like similar movies to their friends.

* Recent recommender systems use social regularization.
— Add a “regularizer” encouraging friends” weights to be similar:
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— If we get a new user, recommendations are based on friend’s preferences.



(pause)



Latent-Factor Models for Visualization

* PCA takes features x; and gives k-dimensional approximation z..
* If kis small, we can use this to visualize high-dimensional data.
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Motivation for Non-Linear Latent-Factor Models

 But PCA is a parametric linear model

 PCA may not find obvious low-dimensional structure.
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We could use change of basis or kernels: but still need to pick basis.



Multi-Dimensional Scaling

e PCA for visualization:
— We’re using PCA to get the location of the z. values.
— We then plot the z; values as locations in a scatterplot.

* Multi-dimensional scaling (MDS) is a crazy idea:
— Let’s directly optimize the pixel locations of the z; values.

* “Gradient descent on the points in a scatterplot”.

— Needs a “cost” function saying how “good” the z, locations are.
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Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.
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t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:

— Focus on distance to “neighbours”(allow large variance in other distances)
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https://distill.pub/2016/misread-tsne

Summary

Recommender systems try to recommend products.
Collaborative filtering tries to fill in missing values in a matrix.

— Matrix factorization is a common approach.

Multi-dimensional scaling is a non-parametric latent-factor model.
— Big space of variants that we didn’t have time to go into.

Next time: the long-awaited start of deep learning.



Digression: “Whitening”

With image data, features will be very redundant.
— Neighbouring pixels tend to have similar values.

A standard transformation in these settings is “whitening”:
— Rotate the data so features are uncorrelated.
— Re-scale the rotated features so they have a variance of 1.

Using SVD approach to PCA, we can do this with:
— Get ‘W’ from SVD (usually with k=d).
— Z = XWT (rotate to give uncorrelated features).

— Divide columns of ‘Z’ by corresponding singular values (unit variance).

Details/discussion here.
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http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/
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Motivation for Topic Models

 Want a model of the “factors” making up documents.

— Instead of latent-factor models, they’re called topic models.
— The canonical topic model is latent Dirichlet allocation (LDA).

Suppose you have the following set of sentences:

® | like to eat broccoli and bananas.

® | ate a banana and spinach smoothie for breakfast.

® Chinchillas and kittens are cute.

® My sister adopted a kitten yesterday.

® Look at this cute hamster munching on a piece of broccoli.

What is latent Dirichlet allocation? It’s a way of automatically discovering topics that these sentences contain. For example, given these sentences and asked for 2 topics, LDA might produce
something like

* Sentences 1 and 2: 100% Topic A

* Sentences 3 and 4: 100% Topic B

* Sentence 5. 60% Topic A, 40% Topic B

* Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (at which point, you could interpret topic A to be about food)
® Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (at which point, you could interpret topic B to be about cute animals)

— “Topics” could be useful for things like searching for relevant documents.



Term Frequency — Inverse Document Frequency

In information retrieval, classic word importance measure is TF-IDF.

First part is the term frequency tf(t,d) of term ‘t’ for document ‘d’.
— Number of times “word” ‘t” occurs in document ‘d’, divided by total words.
— E.g., 7% of words in document ‘d” are “the” and 2% of the words are “Lebron”.

Second part is document frequency df(t,D).

— Compute number of documents that have ‘t” at least once.
— E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

TF-IDF is tf(t,d)*log(1/df(t,D)).

bon UlS_[



bonusf
Term Frequency — Inverse Document Frequency

* The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).
— It’s high if word ‘t” happens often in document ‘d’, but isn’t common.
— E.g., seeing “LeBron” a lot it tells you something about “topic” of article.
— E.g., seeing “the” a lot tells you nothing.

 There are *many™ variations on this statistic.
— E.g., avoiding dividing by zero and all types of “frequencies”.

e Summarizing ‘n” documents into a matrix X:
— Each row corresponds to a document.
— Each column gives the TF-IDF value of a particular word in the document.
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Latent Semantic Indexing

 TF-IDF features are very redundant.
— Consider TF-IDFs of “LeBron”, “Durant”, “Harden”, and “Kobe”.

— High values of these typically just indicate topic of “basketball”.

* We can probably compress this information quite a bit.

* Latent Semantic Indexing/Analysis:
— Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.
— Treat the principal components as the “topics”.
— Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.
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SVDfeature with SGD: the gory details
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Tensor Factorization

* Tensors are higher-order generalizations of matrices: ’ ’
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e Generalization of matrix factorization is tensor factorization:
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e Useful if there are other relevant variables:

* Instead of ratings based on {user,movie}, ratings based {user,movie,group}.

e Useful if you have groups of users, or if ratings change over time.
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Field-Aware Matrix Factorization

* Field-aware factorization machines (FFMs):
— Matrix factorization with multiple z; or w_ for each example or part.
— You choose which z; or w,_ to use based on the value of feature.

 Example from “click through rate” prediction:
— E.g., predict whether “male” clicks on “nike” advertising on “espn” page.
— A previous matrix factorization method for the 3 factors used:
Wespe Wige * Wy
— FFMs could use: w.’?{, o w,fr, W,Z, fui wh
* wespnA is the factor we use when multiplying by a an advertiser’s latent factor.
* wespnG is the factor we use when multiplying by a group’s latent factor.

e This approach has won some Kaggle competitions (link),
and has shown to work well in production systems too (link).
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https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
https://arxiv.org/pdf/1701.04099.pdf
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Warm-Starting

We've used data {X,y} to fit a model.
We now have new training data and want to fit new and old data.

Do we need to re-fit from scratch?

This is the warm starting problem.

— |t’s easier to warm start some models than others.
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Easy Case: K-Nearest Neighbours and Counting

e K-nearest neighbours:
— KNN just stores the training data, so just store the new data.

* Counting-based models:
— Models that base predictions on frequencies of events.
— E.g., naive Bayes.
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— Decision trees with fixed rules: just update counts at the leaves.
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Medium Case: L2-Regularized Least Squares™

e |L2-regularized least squares is obtained from linear algebra:
w= (X A7 (Xy)

— Cost is O(nd? + d3) for ‘n’ training examples and ‘d’ features.

* Given one new point, we need to compute:
— X'y with one row added, which costs O(d).
— Old X™X plus xx;", which costs O(d?).
— Solution of linear system, which costs O(d3).
— So cost of adding ‘t” new data point is O(td?).

* With “matrix factorization updates”, can reduce this to O(td?).
— Cheaper than computing from scratch, particularly for large d.
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Medium Case: Logistic Regression

* We fit logistic regression by gradient descent on a convex function.

* With new data, convex function f(w) changes to new function g(w).

n+¥ |
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* |If we don’t have much more data, ‘f" and ‘g” will be “close”.

— Start gradient descent on ‘g’ with minimizer of ‘f’.
— You can show that it requires fewer iterations.
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Hard Cases: Non-Convex/Greedy Models

For decision trees:
— “Warm start”: continue splitting nodes that haven’t already been split.
— “Cold start”: re-fit everything.

Unlike previous cases, this won’t in general give same result as re-fitting:
— New data points might lead to different splits higher up in the tree.

Intermediate: usually do warm start but occasionally do a cold start.

Similar heuristics/conclusions for other non-convex/greedy models:

— K-means clustering.
— Matrix factorization (though you can continue PCA algorithms).



