CPSC 340:
Machine Learning and Data Mining

Recommender Systems
Spring 2022 (2021W?2)

Admin

e A5 due this Friday (midnight)
* Final exam format will be similar to the midterm. Online (Canvas).

Last Few Lectures: Latent-Factor Models

 We've been discussing latent-factor models of the form:

F(w,2)= _% f Kujar=x;)*

=t)=t
 We get different models under different conditions:
— K-means: each z, has one ‘1’ and the rest are zero.

— Least squares: we only have one variable (d=1) and the z, are fixed.
— PCA: no restrictions on W or Z.

* Orthogonal PCA (usual case): the rows w, have norm 1 and inner products of zero.

— NMF: all elements of W and Z are non-negative.

Variations on Latent-Factor Models

 We can use all our tricks for linear regression in this context:

flw2)= sz\ RS TSy 5,

‘-' c., z () C/

* Absolute Ioss gives robust PCA that is less sensitive to outliers.

* We can use L2-regularization.
— Though only reduces overfitting if we regularize both ‘W’ and ‘Z’.

* We can use L1-regularization to give sparse latent factors/features.

* We can use logistic/softmax/Poisson losses for discrete X
* Can use change of basis to learn non-linear latent-factor models.

bonus,(
Application: Image Restoration

bonus_(
Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:

s

1= =

~?

Sl?t 0r X: (('Wm)t ke\qh*)’(iwar wijﬂ‘) Im/ ((fdd\ """9‘-7)"(,3(!\“"»“”"3)

bon us_‘

—

Latent-Factor Models for Image Patches

* Consider building latent-factors for general image patches:

Typical pre-processing:

1. Usual variable centering
2. “Whiten” patches.
(remove correlations - bonus)

bon U&S,(

—

Latent-Factor Models for Image Patches

Orthogonal bases don’t seem right:
 Few PCs do almost everything.
 Most PCs do almost nothing.

We believe “simple cells” in visual cortex use:

(b) Principal components. ‘Gabor’ filters

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf
http://stackoverflow.com/questions/16059462/comparing-textures-with-ope ncv-and-gabor-filters

bonus,(
Latent-Factor Models for Image Patches

e Results from a “sparse” (hon-orthogonal) latent factor model:
= lew™] B ™ L. o])] TN e ¥

F

(a) With centering - gray. (b) With centering - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

bon U&S,[

—

Latent-Factor Models for Image Patches

e Results from a “sparse” (non-orthogonal) latent-factor model:

(c¢) With whitening - gray. (d) With whitening - RGB.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

bon U&S,‘

Recent Work: Structured Sparsity

e Basis learned with a variant of “structured sparsity”:

. Iy .
Sm:lar '.,0 (or1¢(a/ (o/mm.ng“

‘H\eor\/ n vijvm/ COrILex

(b) With 4 x 4 neighborhood.

http://lear.inrialpes.fr/people/mairal/resources/pdf/review_sparse_arxiv.pdf

* For modeling data as combinations of non-negative parts,
NMF has largely been replaced by “topic models”.
— A “fully-Bayesian” model where sparsity arises naturally.
— Most popular example is called “latent Dirichlet allocation” (CPSC 440).

Topic proportions and

Beyond NMF: Topic Models

Topics

gene

0.04
0.02
0.01

Documents

assignments

nnnnn

Seeking Life’s Bare (Genetic) Necessities
COLD SPRING HARBOR, NEW YORK- we not all thar far apart.” oy Iy 4

bon us_‘

(pause)

Recommender System Motivation: Netflix Prize

 Netflix Prize:

— 100M ratings from 0.5M users on 18k movies.
— Grand prize was S1M for first team to reduce squared error by 10%.
— Started on October 2" 2006.

— Netflix’s system was first beat October 8th,

— 1% error reduction achieved on October 15t,
— Steady improvement after that.

* ML methods soon dominated.

— One obstacle was ‘Napoleon Dynamite’ problem:
* Some movie ratings seem very difficult to predict.
* Should only be recommended to certain groups.

Lessons Learned from Netflix Prize

* Prize awarded in 2009:

— Ensemble method that averaged 107 models.
— Increasing diversity of models more important than improving models.

Bellors Fogrenic (haos 1000000
00,
ONE_ MiLLiON

* Winning entry (and most entries) used collaborative filtering:
— Methods that only looks at ratings, not features of movies/users.

* Asimple collaborative filtering method that does really well (7%):
— “Regularized matrix factorization”. Now adopted by many companies.

Motivation: Other Recommender Systems

* Recommender systems are now everywhere:

— Music, news, books, jokes, experts, restaurants, friends, dates, etc.

 Main types of approaches:
1. Content-based filtering.

e Supervised learning:
— Extract features x; of users and items, building model to predict rating y, given x.
— Apply model to prediction for new users/items.

) o

* Example: G-mail’s “important messages” (personalization with “local” features).

2. Collaborative filtering.

e “Unsupervised” learning (have label matrix Y’ but no features):
— We only have labels y; (rating of user ‘i’ for movie j’).

 Example: Amazon recommendation algorithm.

Collaborative Filtering Problem

* Collaborative filtering is “filling in” the user-item matrix:

! CT/"(’ N Lan)[c)/‘n'

l
r- ? q 3 2 3 3—7 " \!
Y Tl |2 5 = K)’“"’ ﬁeYW/JS
2 ? 5 \? c
-2 3 =3 7 {
N -
Movie

* We have some ratings available with values {1, 2, 3, 4, 5}.

* We want to predict ratings “?” by looking at available ratings.

Collaborative Filtering Problem

* Collaborative filtering is “filling in” the user-item matrix:

”CT/'f(’/\ Lo,n)[c)/‘n'
l
7 4 3 ;\/3—?9

2 & \
{ =l |czT 7 & [ke Al

5

7

:
o] | 2]

o7
—2 3 3 7 Y \H
>
\./ Smilar movie
V\aoV!ﬁ

 What rating would “Ryan Reynolds” give to “Green Lantern”?
— Why is this not completely hopeless? It could be anything.
— But we may have similar users and movies.

Matrix Factorization for Collaborative Filtering

Our standard latent-factor model for entries in matrix ‘Y’:

Y/’V"ZW y.\)%<w’)z,>
nxd nxk kxd
User ‘i’ has latent features z..

Movie ‘]’ has latent features wi.
Our loss functions sums over available ratings ‘R’:
- 2 2
2wy = Z iz = v)2 +A0z21F + 2
’ Gpek /) 2” I 7
And we add L2-regularization to both types of features.

— Basically, this is regularized PCA on the available entries of .
— Typically fit with SGD.

This simple method gives you a 7% improvement on the Netflix problem.

W7

bon UlS_[

Adding Global/User/Movie Biases -

e Qur standard latent-factor model for entries in matrix ‘Y’:
N\ < \)-
Y{’) — W)Zé7

* Sometimes we don’t assume the y; have a mean of zero:
— We could add bias reflectlng average overall rating:

)/\) ﬁ+<“’)z 7

— We could also add a user-specific bias B; and item-specific bias (3;.
N .
=B +), +6 t<w) 2,7

* Some users are more generous, and some movies are just better.
* These might also be regularized.

Beyond Accuracy in Recommender Systems

* Winning system of Netflix Challenge was never adopted.

e Other issuesimportant in recommender systems:

— Diversity: how different are the recommendations?
* If you like ‘Battle of Five Armies Extended Edition’, recommend ‘Battle of Five Armies’?
* Even if you really really like Star Wars, you might want non-Star-Wars suggestions.

— Persistence: how long should recommendations last? [ikeidatihtdn

v Similar to games you've played:

* If you keep not clicking on “Justice League’, should it go away? |EEsEG—__i Y ST

— Trust: tell user why you made a recommendation.
— Social recommendation: what did your friends watch?

— Freshness: people tend to get more excited about
new/surprising things.

* Collaborative filtering does not predict well for new users/movies.

— New movies don’t yet have ratings, and new users haven’t rated anything.

v’ User reviews: Very Positive

() 1 friend wants this game:

Content-Based vs. Collaborative Filtering

* Our latent-factor approach to collaborative filtering (Part 4):
N

Vi~ w27

”Lm“&/;\ Pfthvs of r\qo\\,/,‘:\/ \M\J_)7 "lﬂonn“ ﬂoq‘/wq of USer

— Learns about each user/movie, but can’t predict on new users/movies.

* Alinear model approach to content-based filtering (Part 3):
N

T _
L = - |
i~ WA Ve aswal = w/'x,
e Nearng sellay
— Here x; is a vector of features for the movie/user.

* Usual supervised learning setup: ‘y’ would contain all the y;;, X would have x; as rows.
— Can predict on new users/movies, but can’t learn about each user/movie.

|Oon U\S_(

—

Hybrid Approaches

* Hybrid approaches combine content-based/collaborative filtering:
— SVDfeature (won “KDD Cup” in 2011 and 2012).

N _— ‘» EX'ffu ‘Po\c,‘/o,fj w-e /earn

>/ ﬁ _'—gf ﬁ +W XU+<W Z>o/ g«ffﬁic VlSefSomJ mW),_a)
T \ W\ D el S abed Teatures 2

vor T , ‘Fof' Ser I an
OAW?Z?“ A ze Avcae Slinew model | of o fmfml W
or)
users/mw,e\ $or user ‘ Movie)(Ea)a‘ on ujer/mw,f ‘Pdf movie 5\ J

\—\i; Toatures x,)
S“}a(ﬂcl arJ = K#D/\'/

§u‘:erV\5rJ (ec«/wvt) Can /)redd for new uSed/Mov'QS

— Note that x; is a feature vector. Also, ‘w’ and ‘w)’ are different parameters.

bonus_[
Stochastic Gradient for SVDfeature -

e Common approach to fitting SVDfeature is stochastic gradient.

* Previously you saw stochastic gradient for supervised learning:

)
—C/'\005ﬁ a fomc/orv\ E»Vam/o/e /l

- (/(10147/6 Pﬂfqﬁ’le‘/‘(/s /w\ (/\j)h7 gl’oul/--fmf 070 f)/amf/f /j\

e Stochastic gradient for SVDfeature (formulas as bonus):

/-1
“’CL\UOS—.: QA Y‘aV\JOW\ User ' O\VIJ A r‘am(jow\ }pvoJ(,.(,f' 3-‘

“—Vysclaff /57 ‘Bi) /3)) W) Z,,') qu WJ‘ loanJ or 7Llncir quo//'Jn?L
{or Thes lASer'froc/td.

. . . bonus_[
Social Regularization

* Many recommenders are now connected to social networks.

— “Login using your Facebook account”.

* Often, people like similar movies to their friends.

* Recent recommender systems use social regularization.
— Add a “regularizer” encouraging friends” weights to be similar:

A S -

J\ (’)]e”ﬁlw\tj;
— If we get a new user, recommendations are based on friend’s preferences.

(pause)

Latent-Factor Models for Visualization

* PCA takes features x; and gives k-dimensional approximation z..
* If kis small, we can use this to visualize high-dimensional data.

0.06

0.04

0.02 -

0.02 |-

m
wn
N

- ..‘ ‘. N -
Y - * >
004 + % 7 ‘.,_‘”-- » *‘: \‘,Greece e

006 | %y,

-0.08

1 1 ! 1
0.05 0 0.05 0.1 0.15

Motivation for Non-Linear Latent-Factor Models

 But PCA is a parametric linear model

 PCA may not find obvious low-dimensional structure.

A[AI M DY v <| <4 4 A B PP Y S,

AAB b?vvv((&&&bbvv .o..:..o.o....o.-.o.-

AADD Y YT T4 L bbbV N R B

A AN D Y v /w4442 P VY e e St a2

AAD D> v[riw/e<laad bppY .?,g: e o

AIAMDIVIVITICIQ<ialbib b biviv -'.'.':-'-'-':.--’:':":'?F \Y‘h"s'-‘ :

A;A‘h;?ﬁ?{v'v‘v < <‘4‘Lv£—’&‘b;b’lv E>:::::030::2{ ::: N

AAND v viwlowlaalealrpry esesasiitiisiy Vedo & | .
Sesetesssesis 'f ,-,;.°, R

AAMDMD YT VY PIR|ICR 4|4\ L\t b VPV ..oo".....o.:'. '. ® o

A:J\:F:P:“:":V:f:'t'{(x.lﬂblp'r'v ...'....-.0_'.3.’.’.":}.:}‘\» Wc \/V__aVl FCA L B

ala|n[n]vly|v|<l<[<|e|a]2a]s]w]v '.'.'.'...‘:..0.':.'.:'-,:;‘ ,

[o[e[e[[e[e[e[SR Something 3“””]‘

.
L L) ...
AlAINIDM I v w2 2|la|la|le|slblrvyY -/@
................... - ... ' L
o ¢’ (s.
e XA
. »
.

We could use change of basis or kernels: but still need to pick basis.

Multi-Dimensional Scaling

e PCA for visualization:
— We’re using PCA to get the location of the z. values.
— We then plot the z; values as locations in a scatterplot.

* Multi-dimensional scaling (MDS) is a crazy idea:
— Let’s directly optimize the pixel locations of the z; values.

* “Gradient descent on the points in a scatterplot”.

— Needs a “cost” function saying how “good” the z, locations are.

 Traditional MDS cost function: ‘7/LTfY to moke SCQHP(p'0+
A4 2 distances T
£(2)= 25 (=)l ~ lly = l1)* oo mabi b dmomin
. . ! J ') Q{/ 4)
= gEitl e~ \— Stivee
&\sﬂo\v\cg ' L)) DJS'/E«W(C Eefwoe,\ /odw\b‘

sum oV e : -
ol gy Sedberdd 0 oriind 4 fimenss

Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):

— Directly optimize the final locations of the z, values.

'F(Z): é % (”Z,"’ZJ'“ - ”Yi "’x)'“)l

= \‘)::;4"
‘?_r’u}e °\’¥’+0\V\cr"\)(](/'\222)f#@ J{_gfan[e fn
IN 5‘>°\c€ OPXE / gloalce of 2,
\/ Sma “ c\iSTdvlCé SMG/I Q/'(quywe
/ x\o/ in space of x: x\)/y - cpuce e .

j/—, 7 Xif > Z(/

Xiz

bon UlS_[

t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:

— Focus on distance to “neighbours”(allow large variance in other distances)

PCA

Y
X &
XK i
xx fx —éx—"‘” \flf) to
5 J, r preserve
8% / larser Aislances
x X % X)‘ x X x
XXX{ ¥)§

omﬂ

VC)"C!O\AM," becawe doesnt

Good demo: https://distill.pub/2016/misread-tsne Focus 6n 5&/ Ji;+an(y

t-Sne

/%H—Tfl,() -fb
x X leser/€
(e
X x

Y
¥ x
X nef.ZALqu

XX K Alsfanle),
'Focujo'on 'lABC
O‘m’x XY)y e KX
L,v " , o\ "
repuision w 4
"“"'P are | in digtouces.

https://distill.pub/2016/misread-tsne

Summary

Recommender systems try to recommend products.
Collaborative filtering tries to fill in missing values in a matrix.

— Matrix factorization is a common approach.

Multi-dimensional scaling is a non-parametric latent-factor model.
— Big space of variants that we didn’t have time to go into.

Next time: the long-awaited start of deep learning.

Digression: “Whitening”

With image data, features will be very redundant.
— Neighbouring pixels tend to have similar values.

A standard transformation in these settings is “whitening”:
— Rotate the data so features are uncorrelated.
— Re-scale the rotated features so they have a variance of 1.

Using SVD approach to PCA, we can do this with:
— Get ‘W’ from SVD (usually with k=d).
— Z = XWT (rotate to give uncorrelated features).

— Divide columns of ‘Z’ by corresponding singular values (unit variance).

Details/discussion here.

bonusf

http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/

bonus_(
Motivation for Topic Models

 Want a model of the “factors” making up documents.

— Instead of latent-factor models, they’re called topic models.
— The canonical topic model is latent Dirichlet allocation (LDA).

Suppose you have the following set of sentences:

® | like to eat broccoli and bananas.

® | ate a banana and spinach smoothie for breakfast.

® Chinchillas and kittens are cute.

® My sister adopted a kitten yesterday.

® Look at this cute hamster munching on a piece of broccoli.

What is latent Dirichlet allocation? It’s a way of automatically discovering topics that these sentences contain. For example, given these sentences and asked for 2 topics, LDA might produce
something like

* Sentences 1 and 2: 100% Topic A

* Sentences 3 and 4: 100% Topic B

* Sentence 5. 60% Topic A, 40% Topic B

* Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, ... (at which point, you could interpret topic A to be about food)
® Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, ... (at which point, you could interpret topic B to be about cute animals)

— “Topics” could be useful for things like searching for relevant documents.

Term Frequency — Inverse Document Frequency

In information retrieval, classic word importance measure is TF-IDF.

First part is the term frequency tf(t,d) of term ‘t’ for document ‘d’.
— Number of times “word” ‘t” occurs in document ‘d’, divided by total words.
— E.g., 7% of words in document ‘d” are “the” and 2% of the words are “Lebron”.

Second part is document frequency df(t,D).

— Compute number of documents that have ‘t” at least once.
— E.g., 100% of documents contain “the” and 0.01% have “LeBron”.

TF-IDF is tf(t,d)*log(1/df(t,D)).

bon UlS_[

bonusf
Term Frequency — Inverse Document Frequency

* The TF-IDF statistic is tf(t,d)*log(1/df(t,D)).
— It’s high if word ‘t” happens often in document ‘d’, but isn’t common.
— E.g., seeing “LeBron” a lot it tells you something about “topic” of article.
— E.g., seeing “the” a lot tells you nothing.

 There are *many™ variations on this statistic.
— E.g., avoiding dividing by zero and all types of “frequencies”.

e Summarizing ‘n” documents into a matrix X:
— Each row corresponds to a document.
— Each column gives the TF-IDF value of a particular word in the document.

bonus_[
Latent Semantic Indexing

 TF-IDF features are very redundant.
— Consider TF-IDFs of “LeBron”, “Durant”, “Harden”, and “Kobe”.

— High values of these typically just indicate topic of “basketball”.

* We can probably compress this information quite a bit.

* Latent Semantic Indexing/Analysis:
— Run latent-factor model (like PCA or NMF) on TF-IDF matrix X.
— Treat the principal components as the “topics”.
— Latent Dirichlet allocation is a variant that avoids weird df(t,D) heuristic.

bonusf

SVDfeature with SGD: the gory details
Ob)e (/'Iiv(-'_2’ i (9') — y’.).>z WIﬂ\ >//\,) :f‘}/gﬂ%) _M"/TX/'J' u (“)')7Zi

WER
r..
\/FJ”\}E’ bise d Oop thJOVBw (/')J' >
f=F —ox i w =W T <X "‘V'”‘/“j’." “y
) €.
fi= fi= =i 2i% 2 "ol W
b= F) ~xri S i o ’l
Ay W - w oéf,J 4
L 7L , ‘\/(cj'lfm areé 71«: Sl_h_n_f’? \/quf-oj "FG/
‘1] ! 15 i\’W_ﬁ)ﬁ \Afe{q"}f’ while }g', aud g) arY §()eci{ic User
orly V'f‘!“h"j fo The ffrc')fic Wrr"’/"&c‘wt‘/ an d pw:‘w‘i.

(AAJIV‘Q /Cgulﬁizd';uv\ qJJ; Gn éY*’u '}‘C/W)

Tensor Factorization

* Tensors are higher-order generalizations of matrices: ’ ’

C = e = h ! - B ﬁj

g ‘7"‘“’ x Cly;:(V clbr (0}]Ax] MOI" 4 A [7(4(@[/4 = ‘)
Irf

B l drd <d
e Generalization of matrix factorization is tensor factorization:
k
VaVd
yljm’v é V\/chicvmc,
c=i

e Useful if there are other relevant variables:

* Instead of ratings based on {user,movie}, ratings based {user,movie,group}.

e Useful if you have groups of users, or if ratings change over time.

bonuS!
Field-Aware Matrix Factorization

* Field-aware factorization machines (FFMs):
— Matrix factorization with multiple z; or w_ for each example or part.
— You choose which z; or w,_ to use based on the value of feature.

 Example from “click through rate” prediction:
— E.g., predict whether “male” clicks on “nike” advertising on “espn” page.
— A previous matrix factorization method for the 3 factors used:
Wespe Wige * Wy
— FFMs could use: w.’?{, o w,fr, W,Z, fui wh
* wespnA is the factor we use when multiplying by a an advertiser’s latent factor.
* wespnG is the factor we use when multiplying by a group’s latent factor.

e This approach has won some Kaggle competitions (link),
and has shown to work well in production systems too (link).

n Wha’c f Wm'lf(Wma/p

https://www.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf
https://arxiv.org/pdf/1701.04099.pdf

bon us_‘

Warm-Starting

We've used data {X,y} to fit a model.
We now have new training data and want to fit new and old data.

Do we need to re-fit from scratch?

This is the warm starting problem.

— |t’s easier to warm start some models than others.

bonus_[
Easy Case: K-Nearest Neighbours and Counting

e K-nearest neighbours:
— KNN just stores the training data, so just store the new data.

* Counting-based models:
— Models that base predictions on frequencies of events.
— E.g., naive Bayes.

\\) — (O\M'/' d'r {viwj’r\))'fm; m I:);Cuv qu«! OU c/n%;

_ Just update the counts: p(icodin' | 'Sparm
COV""‘} of 'ﬁchm" in new and oll (lq/f

— Decision trees with fixed rules: just update counts at the leaves.

bonuS!
Medium Case: L2-Regularized Least Squares™

e |L2-regularized least squares is obtained from linear algebra:
w= (X A7 (Xy)

— Cost is O(nd? + d3) for ‘n’ training examples and ‘d’ features.

* Given one new point, we need to compute:
— X'y with one row added, which costs O(d).
— Old X™X plus xx;", which costs O(d?).
— Solution of linear system, which costs O(d3).
— So cost of adding ‘t” new data point is O(td?).

* With “matrix factorization updates”, can reduce this to O(td?).
— Cheaper than computing from scratch, particularly for large d.

bon us_‘

—

Medium Case: Logistic Regression

* We fit logistic regression by gradient descent on a convex function.

* With new data, convex function f(w) changes to new function g(w).

n+¥ |

fl)= 2 £ q) = 2 £

(=)
* |If we don’t have much more data, ‘f" and ‘g” will be “close”.

— Start gradient descent on ‘g’ with minimizer of ‘f’.
— You can show that it requires fewer iterations.

(J(‘“’>
Tl

bon UlS_[

—

Hard Cases: Non-Convex/Greedy Models

For decision trees:
— “Warm start”: continue splitting nodes that haven’t already been split.
— “Cold start”: re-fit everything.

Unlike previous cases, this won’t in general give same result as re-fitting:
— New data points might lead to different splits higher up in the tree.

Intermediate: usually do warm start but occasionally do a cold start.

Similar heuristics/conclusions for other non-convex/greedy models:

— K-means clustering.
— Matrix factorization (though you can continue PCA algorithms).

