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Admin

* Course SUrveys
— Please fill them out
— We care deeply about your education, so we take them very seriously
— You will be able to evaluate the class overall, and then Mijung and | separately

— Please use the text boxes to also let us know about the “lecture specialization
experiment” [where we each specialized in half the lectures]

— As always, please remember we’re real people, so both praise and critical
feedback are great. Please avoid personal, hurtful, or unconstructive negative
comments.

* A5 deadline tonight
* A6 out soon: by Monday at the latest, due April 8 (our last class)



End of Part 4: Key Concepts

e We discussed linear latent-factor models:
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* Represent X" as linear combination of latent factors ‘w.’.

— Latent features ‘z” give a lower-dimensional version of each ‘x/".

— When k=1, finds direction that minimizes squared orthogonal distance.
* Applications:

— Outlier detection, dimensionality reduction, data compression, features for linear
models, visualization, factor discovery, filling in missing entries.



End of Part 4: Key Concepts

We discussed linear latent-factor models:

P(W2)= 2 2 (2> = %)}
Principal component analysis (PCA):
— Often uses orthogonal factors and fits them sequentially (via SVD).
Non-negative matrix factorization:
— Uses non-negative factors giving sparsity.
— Can be minimized with projected gradient.
Many variations are possible:

— Different regularizers (sparse coding) or loss functions (robust/binary PCA).
— Missing values (recommender systems) or change of basis (kernel PCA).
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End of Part 4: Key Concepts

We didn’t really discuss multi-dimensional scaling (MDS):

— Non-parametric method for high-dimensional data visualization.

— Tries to match distance/similarity in high-/low-dimensions.
e “Gradient descent on scatterplot points”.

Main challenge in MDS methods is “crowding” effect:

— Methods focus on large distances and lose local structure.

Common solutions:

— Sammon mapping: use weighted cost function.

— ISOMAP: approximate geodesic distance using via shortest paths in graph.
— T-SNE: give up on large distances and focus on neighbour distances.

Word2vec is a recent MDS method giving better “word features”.



Supervised Learning Roadmap

Part 1: “Direct” Supervised Learning.
— We learned parameters ‘w’ based on the original features x; and target y..
Part 3: Change of Basis.

— We learned parameters ‘v’ based on a change of basis z, and target y..
Part 4: Latent-Factor Models.

— We learned parameters ‘W’ for basis z; based on only on features x. @
— You can then learn ‘v’ based on change of basis z; and target y..
Part 5: Neural Networks.

— Jointly learn ‘W’ and ‘v’ based on x; and ..

— Learn basis z; that is good for supervised learning.




A Graphical Summary of CPSC 340 Parts 1-5
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Notation for Neural Networks (MEMORIZE)

We l'\o\ve ownr usual Su‘oer\/}sml |emrn,'m) nataton:
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Linear-Linear Model

* Natural choice: linear latent-factor model with linear regression.
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* We want to train ‘W’ and ‘v’ jointly, so we could minimize:
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Introducing Non-Linearity

To increase flexibility, something needs to be non-linear.
Typical choice: transform z, by non-linear function ‘h’.

z, = Wy 5= v'hiz)
— Here the function ‘h’ transforms ‘k’ inputs to ‘k” outputs.
Common choice for ‘h’: applying sigmoid function element-wise:
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So this takes the z._in (-e=,22) and maps it to (0,1).
This is called a “multi-layer perceptron” or a “neural network”.



Why Sigmoid?

* Consider setting ‘h’ to define binary features z;, using:

h(Zic): | if 2,70
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— Each h(z) can be viewed as binary feature.
* “You either have this ‘part’ or you don’t have it.”
— We can make 2% objects by all the Motivation: Pixels vs. Parts
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Why Sigmoid?

* Consider setting ‘h’ to define binary features z;, using:

»\(2«): %‘ it 2,70 |
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— Zic

— Each h(zi) can be viewed as binary feature.

* “You either have this ‘part’ or you don’t have it.”

— But this is hard to optimize (non-differentiable/discontinuous).

* Sigmoid is a smooth approximation to these binary features.

— Non-parametric version is a universal approximator:

* If 'k’ grows appropriately with ‘n’, can model any continuous function.



Supervised Learning Roadmap
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Why “Neural Network”? T

Dendrite Axon terminal

Node of
Ranvier

Cartoon of “typical” neuron:

Schwann cell

Myelin sheath
Nucleus

Neuron has many “dendrites”, which take an input signal.
Neuron has a single “axon”, which sends an output signal.
With the right input to dendrites:

— “Action potential” along axon (like a binary signal):

Volta
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Why “Neural Network”? -
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Why “Neural Network”? T
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“Artificial” Neural Nets vs. “Real” Networks Nets~

 Artificial neural network:
— X; is measurement of the world.
— z;is internal representation of world.
— v, is output of neuron for classification/regression.

e Real neural networks are more complicated:

— Timing of action potentials seems to be important.
e “Rate coding”: frequency of action potentials simulates continuous output.

— Neural networks don’t reflect sparsity of action potentials.
— How much computation is done inside neuron?
— Brain is highly organized (e.g., substructures and cortical columns).

— Connection structure changes.
— Different types of neurotransmitters.



Deep Learning
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“Hierarchies of Parts” Motivation for Deep Learning

Each “neuron” might recognize
a “part” of a digit.

— “Deeper” neurons might recognize
combinations of parts.

— Represent complex objects as
hierarchical combinations of
re-useable parts (a simple “grammar”).

Watch the full video here:
— https://www.youtube.com/watch?v=aircAruvnKk

Theory:

— 1 big-enough hidden layer already gives universal approximation.

— But some functions require exponentially-fewer parameters to approximate with
more layers (can fight curse of dimensionality).


https://www.youtube.com/watch?v=aircAruvnKk

Deep Learning
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Deep Learning

* For 4 layers, we could write the prediction as:

(‘/i - v W h(W” R W@ h(w’%))))

* For ‘m’ layers, we usually just say:
A

>/£:\/TLI wa‘)l/l(,..- h(w“‘xi)J )
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ML and Deep Learning History

e 1950 and 1960s: Initial excitement.

— Perceptron: linear classifier and stochastic gradient (roughly).

— “the embryo of an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of its existence.” w’X,'
New York Times (1958).

* https://www.youtube.com/watch?v=IEFRtz68m-8

— Object recognition
assigned to students as a
summer project

 Then drop in popularity:



https://www.youtube.com/watch?v=IEFRtz68m-8

ML and Deep Learning History

e 1970 and 1980s: Connectionism (brain-inspired ML)

— Want “connected networks of simple units”.
e Use parallel computation and distributed representations.

— Adding hidden layers z; increases expressive power.
* With 1 layer and enough sigmoid units, a universal approximator.

— Success in optical character recognition.
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ML and Deep Learning History

* 1990s and early-2000s: drop in popularity.

— |t proved really difficult to get multi-layer models working robustly.

— We obtained similar performance with simpler models:

e Rise in popularity of logistic regression and SVMs with regularization and kernels.
— Lots of internet successes (spam filtering, web search, recommendation).

— ML moved closer to other fields like numerical optimization and statistics.
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ML and Deep Learning History

e Late 2000s: push to revive connectionism as “deep learning”.
— Canadian Institute For Advanced Research (CIFAR) NCAP program:

* “Neural Computation and Adaptive Perception”.

Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio

Unsupervised successes: “deep belief networks” and “autoencoders”.

Could be used to initialize deep neural networks.

https://www.youtube.com/watch?v=KuPaiOogiHk

B



https://www.youtube.com/watch?v=KuPai0ogiHk
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2010s: DEEP LEARNING!!! -

* Bigger datasets, bigger models, parallel computing (GPUs/clusters).

— And some tweaks to the models from the 1980s.

 Huge improvements in automatic speech recognition (2009).
— All phones now have deep learning.
 Huge improvements in computer vision (2012).

— Changed computer vision field almost instantly. |
— This is now finding its way into products. = . [person
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2010s: DEEP LEARNING!!! -

* Media hype:

— “How many computers to identify a cat? 16,000”
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans”
Wired (2013).

— “What is ‘deep learning” and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

e 2015: huge improvement in language understanding.



Summary

Neural networks learn features z, for supervised learning.
Sigmoid function avoids degeneracy by introducing non-linearity.

— Universal approximator with large-enough ‘k’.

Biological motivation for (deep) neural networks.

Deep learning considers neural networks with many hidden layers.
— Can more-efficiently represent some functions.

Unprecedented performance on difficult pattern recognition tasks.

Next time:

— Training deep networks.
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Multiple Word Prototypes T
 What about homonyms and polysemy?
— The word vectors would need to account for all meanings.
 More recent approaches:
— Try to cluster the different contexts where words appear.
— Use different vectors for different contexts.
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Why z, = Wx.?

In PCA we had that the optimal Z = XWT(WWT)-L.
If W had normalized+orthogonal rows, Z = XW' (since WWT = ).

— So z, = Wx; in this normalized+orthogonal case.

Why we would use z, = Wx; in neural networks?

— We didn’t enforce normalization or orthogonality.

Well, the value W (WWT)1is just “some matrix”.

— You can think of neural networks as just directly learning this matrix.
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Cool Picture Motivation for Deep Learning

* Faces might be composed of different “parts”:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
> I £ \- '\ / ' // 3 Gabor fillers"
T

e Attempt to visualize second layer:
— Corners, angles, surface boundaries?

* Models require many tricks to work.
— We’'ll discuss these next time.
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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e Visualization of second and third layers trained on specific objects:
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http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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. Vlsuallzatlon of second and third Iayers trained on specific objects:

face elephants
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:

faces cars elephants chairs
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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 Visualization of second and third layers trained on specific objects:

faces cars elephants chairs faces, cars, airplanes, motorbikes
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