CPSC 340:
Machine Learning and Data Mining

More Deep Learning
Fall 2021

Admin

Course surveys

— Please fill them out
— We care deeply about your education, so we take them very seriously

— You will be able to evaluate the class overall, and then Mijung and |
separately

— Please use the text boxes to also let us know about the “lecture
specialization experiment” [where we each specialized in half the lectures]

— As always, please remember we’re real people, so both praise and critical
feedback are great. Please avoid personal, hurtful, or unconstructive
negative comments.

A6 out: due April 8 (our last class)

De(r neum_" nef\mr/(sl
¥ = v AW R (W)
-VnPrecOJem/cJ P(r’ltaff\cme on A)H\i(un ,ﬂJL/fM,{

)
\
Learn "W ond 'V %ﬁr
— lewn -rcoj\ANS {o(S \/lseé
’GQN}M‘}_
— Non=linear ' makes i1 a

\Aniversql mr(rox'lmn‘for For lor(’K

~ | ayer ' !
EG(. ' y (,OW\L”wS ,fwd‘sh 'ﬂ‘ﬂf’\ f"‘f\I‘M ’«yef.

Outputs of
each node

BN — — X

Y
I
0
I
0

Neural Networks

Left Center Right Output

neuron2 (right, y)

neuron3 neuron |
(center) (left, x)

3D

Neural Networks

neuron2 (right, y)

neuron3 T neuron |

Left Center Right Output (center) (left, x)
I I 0

Outputs of

4
I
each node CII
3 3D

I

I 0 0 I
0 0 I I
0 0 0 0

X
I
I

0

0

Neural Networks

neuron2 (right)

neuron3 neuron |
(center) (left)

3D

Neural Networks

* Cover’s theorem: “The probability that classes are linearly
separable increases when the features are nonlinearly mapped
to a higher dimensional feature space.” [Coover 1965]

* The output layer requires linear separability.

* The purpose of the hidden layers is to make the problem
linearly separable!

From:

http://130.236.96.13/edu/courses/TBMI26/pdfs/lectures/le5.pdf

Neural Networks

* Multi-layer networks thus allow “non-linear regression”

Sigmoid Function

Figure 18.23 (a) The result of combining two opposite-facing soft threshold functions to
produce a ridge. (b) The result of combining two ridges to produce a bump.

Neural Networks

* Multi-layer networks thus allow “non-linear regression”
* Single hidden layer (often very large):

- can represent any continuous
function

* Two hidden layers:

- can represent any discontinuous
function

Neural Networks

* Multi-layer networks thus allow “non-linear regression”

* Single hidden layer (often very large):

. can represent any continuous function

* Two hidden layers:

- can represent any discontinuous
function

* But how do we train them?

Training Multi-Layer Neural Networks

* General Idea: Propagate the error
backwards

* Called Backpropagation

Hierarchically composed feature representations

Hiera rchy of feature representations

Detected face

Face detectors

I!
Illﬁll
]

EEEERCEN
, . ‘ ace parts
NEERI=a P

Face detectors

Higher-level

representation S
"/ \.
AN A

Faoenalis l\l_lﬂl@llﬁ (combination
IE-%-I(AI of edges)
o detectors i ‘
S IS
Input (sensory) LT 2NESTS aa'iEd edges
data ‘ h el
=1IElim=

Pixels

Lee et al, 2009.

Learning features relevant to the data

Lee et al. 2007

bon (AS,(

ImageNet Challenge

* Millions of labeled images, 1000 object classes.

person

person
_J person

flower pot
helmet

B POWET drill ; 25 ‘. : motorcycle

60\571 Loc humans bul
hard for comruffri

bon U\S,‘

ImageNet Challenge

* Object detection task: 'Image classification

0.3
— Single label per image. ‘9‘
p -
— Humans: ~5% error. ®

c 027
O
—
©
O

* s

% 0.1

w
2 Q
Syberian Husky Canadian Husky Q

0

2010

bon U\S,(

ImageNet Challenge

* Object detection task: tlmage classification

0.3

: : usval ;
— Single label per image. 5 37 wsval improvement
-
— Humans: ~5% error. @
c 027
O
—
(S
O
* e
% 0.1
v
Syberian Husky Canadi Q
0

2010 2011

* Object detection task:

— Single label per image.

ImageNet Challenge

Image classification

— Humans: ~5% error.

Syberian Husky

Canadian Husky

Classification error

0.3

0.2]

0.1}

2010 2011

2/7 YMSWI im/;fovfm{nf
;SWULC‘A ko J(t,« /Qdfnc’ﬂi

(3 ’Q/eff)

2012

bon U\S,(

* Object detection task:

— Single label per image.

ImageNet Challenge

Image classification

— Humans: ~5% error.

Syberian Husky

Canadian Husky

Classification error

0.3

0.2]

0.1}

2010 2011

7 usual '.”'/;"memfr
;SWULC‘A ko J(t,« /Qdfnc’ﬂi

(3 ’Q/eff)

2012 2013

bon U\S,(

ImageNet Challenge

+ Object detection task: 'Image cIassnflcatlon'

0.3

— Single label per image. 37 wsval improyement
— Humans: ~5% error. _ swifch fo deep learning
0.2 (3 ’q/ers)

0.1

Classification error

Syberian Husky Canadian Husky

2010 2011 2012 2013 2014
ILSVRC year

GooaLe /Vc'f-'
6.7 % error
22 |q7er5

bon (AS,(

ity
ImageNet Challenge
Object detection task:
Classification Localization
— Single label per image. o
— Humans: ~5% error. " gos| ([|1 e
2015: Won by Microsoft Asia & oo | G e o

2010 2011 2012 2013 2014 2015 2016 2011 2012 2013 2014 2015 2016

— 3.6% error. ILSVRC year ILSVRC year
— 152 layers, introduced “ResNets”.
— Also won “localization” (finding location of objects in images).

2016: Chinese University of Hong Kong:

— Ensembles of previous winners and other existing methods.

2017: fewer entries, organizers decided this would be last year.

bon U\S_(

Image Classification on ImageNet
Leaderboard Dataset
View Top 1 Accuracy v | by Date v | for All models v

Meta Pseudo Labels (EfficientNet-L2) o
< FixResNeXt-101 32x48d—@
——.—————.~
PNASNet:5-8—

ResNeXt-101 64x4_r—0"'
Inception V.3 ——

> 80
0 : /0/“
é Inception V2
= SPPNeth——0—
S 70
2 Five Base + Five'HiRes
= AlexNet
o
Q 60
SIFT +EVs
50 ®&
40
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Other models -o- State-of-the-art models

(pause)

Deep Learning Practicalities

* This lecture focus on deep learning practical issues:

— Backpropagation to compute gradients.
— Stochastic gradient training.
— Regularization to avoid overfitting.

* Next couple lectures:

— Special ‘W’ restrictions to further avoid overfitting (especially on images).

But first: Adding Bias Variables

Recall fitting line regressmn with a bias:
Ji=Buh

— We avoided this by addlng a column of ones to X.

In neural networks we often want a bias on the output:

>/: ?’Voh WZ)‘;) L)B

But we also often also include biases on each z,_
Z L\(Woxt+£°) +/9

— A bias towards this h(z,c) belng either O or 1.

Equivalent to adding to vector h(z,) an extra value that is always 1.

— For sigmoids, you could equivalently make one row of w, be equal to O.

But first: Adding Bias Variables

Artificial Neural Networks
* With squared loss and 1 hidden layer, our objective function is:
T(uW)= 1 2 (v h(s) =)’

e Usual training procedure: stochastic gradient.
— Compute gradient of random example ‘i’, update both ‘v’ and ‘W’.
— Highly non-convex and can be difficult to tune.

e Computing the gradient is known as “backpropagation”.

— Video giving motivation here.

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Backpropagation

Overview of how we compute neural network gradient:

— Forward propagation:
* Compute z{*) from x..
* Compute z,? from z1,
* Compute y, from z{™), and use this to compute error.
— Backpropagation:
« Compute gradient with respect to regression weights ‘v’

Compute gradient with respect to z,(™ weights W(m),

Compute gradient with respect to z/™1) weights W(m-1),

Compute gradient with respect to z!) weights W),

“Backpropagation” is the chain rule plus some bookkeeping for speed.

bon U\S,‘

Backpropagation

* Instead of the next few bonus slides, | HIGHLY recommend
watching this video from former UBC master’s student Andrej
Karpathy (now director of Al and Autopilot Vision at Tesla)

— https://www.youtube.com/watch?v=i940vYb6noo

Backpropagation - f V)
(;,
* Let’s illustrate backpropagation in a simple setting: zT-"'
— 1 training example, 3 hidden layers, 1 hidden “unit” in layer. r o
w
FOW W W) =3 (5= 0% whee 9 =vh(W7hW R W) M)
— 7‘
2 = chwhwhw) =ch”) o0
’2_£(;): c v h\ (W[Z) h(W(Z)lf\(WU}y")));\ (le)k (W()))-‘)) - v L\\ (Z,-l;)) A[Z"(2)) fwm
AW (")
2i

bon (AS,(

Backpropagation

e Let’s illustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

GAY

£w" Wm) Wu; v)= % (9:' Y) wheve)/’\i =vh (WL W AW,)))
2.;‘ ;\(WB 1'\ (z)k W() f‘)):(‘MZ'B))

v N R V(1)
28 = v h (W2hW W) h(wh (w w:r vh' (27D h(z/)
\/\f_\)
VL2 ()) (W k(W) T—/"(s) mA{(z)) -
I-eru(w“ (W' h (W))W h h (W%) = "W k)
W —_ _y____/

2 o= 0V h (W hW DWOR W W (W') x; = ”’W“)M)

bonus,(
Backpropagation T

e Let’s illustrate backpropagation in a simple setting:

— 1 training example, 3 hidden layers, 1 hidden “unit” in layer.

- (3)

= F"\(Z,') %\%: F"\(Zilf))
%\{v‘” cvh m)"\[z (2)) %\m‘f’ 0 v, h h(m)k[z (2)
%V(z) = r“) W‘;)A {z'.("))A(z‘;" af 7 K

2 (3
(272 WVt
XWC.L (e

(2) o)
z (2i7) K [z

AL 1 rz (75 (z) m
w2]ln .
— Only the first ‘r’ changes if you use a different loss.

— With multiple hidden units, you get extra sums.

= WO)y,

——

 Efficient if you store the sums rather than computing from scratch.

Backpropagation

* |'ve marked those backprop math slides as bonus.

* Do you need to know how to do this?
— Exact details are probably not vital (there are many implementations).
— “Automatic differentiation” is now standard and has same cost.

— But understanding basic idea helps you know what can go wrong.
* Or give hints about what to do when you run out of memory.

— See discussion here by a neural network expert (Andrej!)

* You should know cost of backpropagation:

— Forward pass dominated by matrix multiplications by W), W2 W3) and ‘v’
* If have ‘m’ layers and all z; have ‘k’ elements, cost would be O(dk + mk?).

— Backward pass has same cost as forward pass.

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Multi-class / Multi-label networks

* For ‘k’ labels, replace ‘v’ by a matrix with ‘k” columns

— “Top” of a neural network is just a linear model (with learned z)...
— ...s0 we can do all the same tricks we already learned
— Can still do backprop the same way

* Multi-class: we already learned the softmax loss!
— Often called “cross entropy” by neural network people
— Reason is, well, it’s the cross-entropy: H(p, p) = }.; p; log p;

* Multi-label: add up logistic loss (or whatever) on each output
— In linear models, this was like running separate regressions

— Here, we learn the ‘z/ for all labels at once, so it can help to do together

Deep Learning Vocabulary

“Deep learning”: Models with many hidden layers.
— Usually neural networks.

“Neuron”: node in the neural network graph.
— “Visible unit”: feature.
— “Hidden unit”: latent factor z,. or h(z,.).

“Activation function”: non-linear transform.

“Activation”: h(z).

“Backpropagation”: compute gradient of neural network.

— Sometimes “backpropagation” means “training with SGD”.

“Weight decay”: L2-regularization.

“Cross entropy”: softmax loss.

“Learning rate”: SGD step-size.

“Learning rate decay”: using decreasing step-sizes.

“Vanishing/Exploding gradient”: gradient becoming real small/big for deep net

(pause)

ImageNet Challenge and Optimization

ImageNet challenge:

— Use millions of images to recognize 1000 objects.
ImageNet organizer visited UBC summer 2015.
“Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).
2. Optimization.
Why would optimization be so important?

— Neural network objectives are highly non-convex (and worse with depth).
— Optimization has huge influence on quality of model.

Stochastic Gradient Training

e Standard training method is stochastic gradient (SG):
— Choose a random example ‘V’.
— Use backpropagation to get gradient with respect to all parameters.
— Take a small step in the negative gradient direction.
* Challenging to make SG work:
— Often doesn’t work as a “black box” learning algorithm.

— But people have developed a lot of tricks/modifications to make it work.

* Highly non-convex, so are the problem local mimina?
— Some empirical/theoretical evidence that local minima are not the problem.
— If the network is “deep” and “wide” enough, we think all local minima are good.
— But it can be hard to get SG to close to a local minimum in reasonable time.

Parameter Initialization

e Parameter initialization is crucial:

— Can’tinitialize weights in same layer to same value, or units will stay the same.

* Architecture is symmetric, so gradient would be the same for every hidden unit in the layer,
so they’d all just always stay doing the exact same thing.

— Can’tinitialize weights too large, it will take too long to learn.

e A traditional random initialization:

— Initialize bias variables to 0.
— Sample from standard normal, divided by 10° (0.00001*randn).
 w=.00001*randn(k,1)
— Performing multiple initializations does not seem to be important
(except maybe with very small networks).

°, o . . bOVHAS_(
Parameter Initialization

e Parameter initialization is crucial:

— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

* Also common to transform data in various ways:

— Subtract mean, divide by standard deviation, “whiten”, standardize y..

* More recent initializations try to standardize initial z:
— Use different initialization in each layer.

— Try to make variance of z; the same across layers.
* Popular approach is to sample from standard normal, divide by sgrt(2*ninputs).

— Use samples from uniform distribution on [-b,b], where (= G

——m—

Setting the Step-Size

* Stochastic gradient is very sensitive to the step size in deep models.
e Common approach: manual “babysitting” of the step-size.

— Run SG for a while with a fixed step-size.
— Occasionally measure error and plot progress:

t\/\‘\vmﬂ Aefen)e o(_t
/ » \——9 decrense ot

N

—

C’fra/*

= el

Fime

— If error is not decreasing, decrease step-size.

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.
* Bias step-size multiplier: use bigger step-size for the bias variables.
* Momentum (stochastic version of “heavy-ball” algorithm):

— Add term that moves in previous direction:
“| _ t =1
\/\/6 = wh -o(tVE (wt) +ﬁf(w -t)
s keep gomy in the

o\A A'.rediof‘
— Usually Bt =0.9.

Gradient Descent vs. Heavy-Ball Method

Gr‘ac[if/\‘} Meﬂ\oi Heou/\/“ba” Method

0
w? w

Gradient Descent vs. Heavy-Ball Method

Gr‘ac[if/\‘} Meﬂ\ol HEO\V\/“Ea” Meﬁ\pc(
w? w?
J w
—9

Gradient Descent vs. Heavy-Ball Method

G(‘O\(iifﬂ-} Meﬂ\oi HEO\V\/“Ea” Method

Gradient Descent vs. Heavy-Ball Method

G(‘O\c[i{/\-} Meﬂ\ol Heow\/‘[oa” Me’prC(

Gradient Descent vs. Heavy-Ball Method

G(‘O\c[i{/\-} Meﬂ\ol Heow\/‘[oa” Me’prC(

Gradient Descent vs. Heavy-Ball Method

Gr‘ac[ifﬂ‘f Meﬂ\ol HEO\V\/*Ea” /V\e’fl«\pc(

Gradient Descent vs. Heavy-Ball Method

Gf‘o&c[ifﬂ‘f Meﬂ\ol HEO\V\/*Ea” /V\e’fADC(

Gradient Descent vs. Heavy-Ball Method

G(‘O\c:{i{’/‘-” Meﬂ\ol Heqv\/*ba” /V\eﬂ\oc(

Wd‘s {;OM lP‘F_f \/YQJ]
Ba\mri‘1

Good demo to check out: https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Setting the Step-Size

Automatic method to set step size is Bottou trick:
1. Grab a small set of training examples (maybe 5% of total).
2. Do abinary search for a step size that works well on them.
3. Use this step size for a long time (or slowly decrease it from there).

Several recent methods using a step size for each variable:
— AdaGrad, RMSprop, Adam (often work better “out of the box”).
— Some controversy versus plain stochastic gradient (often with momentum).

* SGD can often get lower test error, even though it takes longer and requires more tuning of step-size.

Batch size (humber of random examples) also influences results.
— Bigger batch sizes often give faster convergence but maybe to worse solutions?

Another recent trick is batch normalization:
— Try to “standardize” the hidden units within the random samples as we go.

— Held as example of deep learning “alchemy” (blog post here about deep learning claims).
* Sounds science-ey and often works, but little theoretical understanding.

bon (AS,(

https://www.youtube.com/watch?v=Qi1Yry33TQE
http://www.argmin.net/2018/01/25/optics

Vanishing Gradient Problem

Consider the sigmoid function:

——
—

.. O . :
Away from the origin, the gradient is nearly zero.
The problem gets worse when you take the sigmoid of a sigmoid:

|

O
In deep networks, many gradients can be nearly zero everywhere.

Rectified Linear Units (RelLU)

e Replace sigmoid with perceptron loss (ReLU); Moxi0,2;c§

o
]4"’/’(3{()

= ——

* Just sets negative values z,_to zero.
— Fixes vanishing gradient problem.
— Gives sparser activations.

— Not really simulating binary signal, but could be simulating “rate coding”.

bom (AS,(
“Swish” Activiation

e Recent work searched for “best” aCtIVV

-5

ax§02

]""/’(z

* Found that z, /(1+exp(-z,)) worked best (“swish” function).
— A bit weird because it allows negative values and is non-monotonic.
— But basically the same as ReLU when not close to O.

Summary

Unprecedented performance on difficult pattern recognition tasks.
Backpropagation computes neural network gradient via chain rule.
Parameter initialization is crucial to neural net performance.

Optimization and step size are crucial to neural net performance.

— “Babysitting”, momentum.

RelLU avoid “vanishing gradients”.

Next lectures: The most important idea in computer vision?

bonuS,‘
Autoencoders

Autoencoders are an unsupervised deep learning model:
— Use the inputs as the output of the neural network.

encoder decoder

w1l w2 w2’ w1’

— Middle layer could be latent features in non-linear latent-factor model.
e Can do outlier detection, data compression, visualization, etc.

— A non-linear generalization of PCA.
e Equivalent to PCA if you don’t have non-linearities.

https://www.cs.toronto.edu/~hinton/science.pdf

Autoencoders

AuﬂlDéV\ Co Jc/

European Community
Interbank markets monetary/economic

s, . < T o e o :) .
- ¥ ‘
Energy markets e
‘ Disasters and
accidents

. ;3 .
. :)
- ‘ ..'.

Leading economic® .~ e ¥ ‘t A

indicators . g ',‘,")." 3

3 X
e A Dl 7 Government
('\.l :\-.r"
Accounts/ T borrowings

. ¥
eamings 1;"

bon U\S,‘

o bonus,(
Denoising Autoencoder

Denoising autoencoders add noise to the input:

encoder decoder

w1 W2 w2’ w1l

— Learns a model that can remove the noise.

