CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
(and miscellaneous deep learning tricks)
Spring 2022 (2021W?2)

Admin

A6 is out. Get it done early!
— Due April 8t

* Bonus! 100% grade in class for anyone who attends today’s class
virtually!

— Click here to redeem offer within 2 minutes:
e https://tinvurl.com/100percentGradeFor340

https://tinyurl.com/100percentGradeFor340

Admin

Plan for April 6t (next wed)

— An experiment!

We will watch two videos from my research past

— With live questions!

Deep Visualization Toolbox:
nttps://www.youtube.com/watch?v=AgkflQ41GaM

Deep Learning Overview & Visualizing What Deep Neural Networks
L earn

nttps://www.youtube.com/watch?v=31p9eN5JE2A

https://www.youtube.com/watch?v=AgkfIQ4IGaM
https://www.youtube.com/watch?v=3lp9eN5JE2A

But first

* A want to briefly revisit two things | flew through

Setting the Step-Size

e Stochastic gradient is very sensitive to the step size in deep models.
* Bias step-size multiplier: use bigger step-size for the bias variables.
* Momentum (stochastic version of “heavy-ball” algorithm):

— Add term that moves in previous direction:
“| _ t =1
\/\/6 = wh -o(tVE (wt) +ﬁf(w -t)
s keep gomy in the

o\A A'.rediof‘
— Usually Bt =0.9.

Gradient Descent vs. Heavy-Ball Method

Gr‘ac[if/\‘} Meﬂ\oi Heou/\/“ba” Method

0
w? w

Gradient Descent vs. Heavy-Ball Method

Gr‘ac[if/\‘} Meﬂ\ol HEO\V\/“Ea” Meﬁ\pc(
w? w?
J w
—9

Gradient Descent vs. Heavy-Ball Method

G(‘O\(iifﬂ-} Meﬂ\oi HEO\V\/“Ea” Method

Gradient Descent vs. Heavy-Ball Method

G(‘O\c[i{/\-} Meﬂ\ol Heow\/‘[oa” Me’prC(

Gradient Descent vs. Heavy-Ball Method

G(‘O\c[i{/\-} Meﬂ\ol Heow\/‘[oa” Me’prC(

Gradient Descent vs. Heavy-Ball Method

Gr‘ac[ifﬂ‘f Meﬂ\ol HEO\V\/*Ea” /V\e’fl«\pc(

Gradient Descent vs. Heavy-Ball Method

Gf‘o&c[ifﬂ‘f Meﬂ\ol HEO\V\/*Ea” /V\e’fADC(

Gradient Descent vs. Heavy-Ball Method

G(‘O\c:{i{’/‘-” Meﬂ\ol Heqv\/*ba” /V\eﬂ\oc(

Wd‘s {;OM lP‘F_f \/YQJ]
Ba\mri‘1

Good demo to check out: https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Convolutions as Features

e (Classic vision methods use convolutions as features:

— Usually have different types/variances/orientations.
— Can take maxes across locations/orientations/scales.

* Notable convolutions:
— Gaussian (blurring/averaging).

— Laplace of Gaussian
(second-derivative).

— Gabor filters oE
(directional first- or higher-derivative). - \".

Filter Banks

* To characterize context, we used to use filter banks like “MR8”:

— 1 Gaussian filter, 1 Laplacian of Gaussian filter. =n
— 6 max(abs(Gabor)) filters: ~ P
* 3 scales of sine/cosine (maxed over 6 orientations). ==
=SIN /=
=Nl 7)7

\ | / -

= SN

* Convolutional neural networks (next time!) are replacing filter banks.

Now back to our regularly scheduled program

1D Convolution as Matrix Multiplication

e 1D convolution:

— Takes signal ‘x” and filter ‘w’ to produces vector ‘z’:
S ¥ w =

02 ‘k ' ‘ “‘

C , 2 - ,J e At M
- U

| ““\‘ (! il

|

08
5 -+ 3 2 A 0 1 2 3 a 5

R o Typo: the signs of -1
— Can be written as a matrix multiplication: and 2 are wrong in

,) __1 \ O ® O ... 0O 0 0 D"‘T the matrix
\/\/:@\’1\00“”0%%8 _
o0\ -1 1 0- "0 X =2

Lo ooo g0 D121

1D Convolution as Matrix Multiplication

 Each element of a convolution is an inner product:

™M
2‘2._2 W)XH
y=-m
T Posi fians j-m fh/ovt)l\ [tm
= W X(opi S~ A
WA ma/“'m) " 0 0]

':G//T)(Whore \;\V/;EO 0 0

e So convolution is a matrix multiplication (I’'m ignoring boundaries):

~/ o —w -0 00
Z:: W)‘ wl'“?/t’ W: O - W 007
Lo 0 O w 4

 The shorter ‘W’ is, the more sparse the matrix is.

{

}'Yla(‘friy Coan éﬁ

Very spate anl

Or\‘y has dm* variabes,

2D Convolution as Matrix Multiplication

e 2D convolution:

— Signal ‘x’, filter ‘w’, and output ‘z’ are now all images/matrices:
X ¥ oow =

Input Filter

— Vectorized ‘Z’ can be written as a matrix multiplication with vectorized ‘x’:

) -'IOOOO ~0. =l 0 | 0 00- OD l 20()0 O
g -2 -1 0 ‘0,' o -1 0 | 00 0 DM
= '. -2“40[0 9 0O -~ "l(?l/o 0 0 T "'0/2/00
D . - ’ - = Sy
-O(-)wo— /%-’ O o0 -TO/F‘Q — 0 000 '“‘0,\~l o | O 00"'9,0'1'
| 0 O o 000 0,0 2 -l 0 00-"+~0 0 -1 O I UU"O,OW

Motivation for Convolutional Neural Networks

Consider training neural networks on 256 by 256 images.
— This is 256 by 256 by 3 = 200,000 inputs.

If first layer has k=10,000, then it has about 2 billion parameters.
— We want to avoid this huge number (due to storage and overfitting).

Key idea: make Wx act like several convolutions (to make it sparse):

1. Each row of W only applies to part of x.. wl:EO 0 b w — O OOJ

00 O()D]
_ w
\A{l’LO

Forces most weights to be zero, reduces number of parameters.

2. Use the same parameters between rows.

Motivation for Convolutional Neural Networks

* (Classic vision methods uses fixed convolutions as features:

— Usually have different types/variances/orientations.

— Can do subsampling or take maxes across locations/orientations/scales.

x ¥

2

|

7

Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the convolutions:

— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Don’t pick from fixed convolutions but Iearn the elements of the filters.

. a4
ik

Motivation for Convolutional Neural Networks

* Convolutional neural networks learn the convolutions:

— Learning ‘W’ and ‘v’ automatically chooses types/variances/orientations.
— Can do multiple layers of convolution to get deep hierarchical features.

x j/ W Z} —\ HOW NEURALNETWORKS RECOGNIZEA DOG IN A PHOTO
! lj? —7 .
- training phase, a
: : neural n.s(rk is
\ / I : i tn‘

—

> >/',

Two Main Motivations

* Translation invariance (data-efficient to learn, less likely to overfit)

* Hierarchy
/ 1/7 £ &]~ CAR
g 7 & —| — TRUCK
i i | — VAN
) - 0 o
[—
e T e
'/ 4/7 [l [] — BicYCLE
FULLY
I INPUT CONVOLUTION +RELU POOLING CONVOLUTION + RELU POOLING 3 \FLATTEN ciaatcris SOFTMAX y

FEATURE LEARNING CLASSIFICATION

Detected face

> r - ‘;‘l- ’;!‘ o“s
vy 1y w» 'N')\ L
ol 2 a) dCC UJeLE U
IS e iy
> .’ ! ‘. W ’W
Higher-level Face detectors I
representation
‘ =" dCEe g
A - -
Face parts e =) Ombinatio
. : OT edge
> . —
Edge '
detectors
Input (sensory) - adoe
data . UE
w ;}i [——
- “
Pixels 4 DIXE

INPUT

— CAR

i

) = | — TRUCK
@ W | — van
] [] — BICYCLE
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN o;«ur:guo SOFTMAX

Y b

FEATURE LEARNING CLASSIFICATION

Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.

— (""L/ R
- W
() — — —
W= —™
. _
wk('" |

Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.

’D , /\ﬁdls‘/ame bolwean coilus of o6 lution 15 ca//[/
e xamp'l | "
— W, - 9, 0 o)
(m)_ ’O B \A/(“ o O gﬂe Wz lASf(j Gc/ess
. 0 ° () VWMH/{o/(” rows.

o 0o 0 00 O— "
<~—-——-o<700060

()

2 gﬂc and Smm//
— U O O O O O /Wgw —d nw,,l,e, O'P Pa/b.ﬂ\f’/f/&

Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
— Pooling layer: combine results of convolutions.

* Can add some invariance or just make the number of parameters smaller.

e Often ‘max pooling’:

/V\a«)(}mum -———_h

\‘ over 2Ax1 L' —
V\fi()\';%nrl\o o

Convolutional Neural Networks

e Convolutional Neural Networks classically have 3 layer “types”:

— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to act like several convolutions.
— Pooling layer: combine results of convolutions.

* Can add some invariance or just make the number of parameters smaller.

* Often ‘max pooling’ or else ‘average pooling’:

\‘ Avermst
over 2x1
V\fi()\';%nrl\o od

bonus,(
Max Pooling vs Average Pooling

 Both downsample the image

* Max pooling: “any of these options is present”

— Much more common, especially in early layers
— “There’s an edge here, but | don’t really care how thick it is”

* Average pooling: “all/most of these options are present”
— If used, more often at the end of the network
— “Most of the big patches look like a picture of a train®

LeNet for Optical Character Recognition

W00 = v o M e O

bomAS,(
Deep Hierarchies in the Visual System =

DEEP HIERARCHIES IN THE VISUAL SYSTEM

LOCATION FEATURE RECEPTIVE FIELD SIZE
RETINA PHOTORECEPTOR dece
Right visual field GANGLION CELL 0 ®
conifeld
g THALAMUS LGN oe SEaE

LATERAL GENICULATENUCLEUS @ Q

= Temporal

Vi SIMPLE CELL S~ I

© o
COMPLEX CELL (D ‘IID @@

i \ vz ? ‘“’ L‘

Temporal = 8

Pulvinar nucleus """

Lateral geniculate ——

nucleus ‘ 7 TEXTURE-DEFINED ILLUSORY BORDER
Superior colliculus = CONTOURS CONTOURS OWNERSHIP e]
(V3)
Optic radiation =~
N Primary visual cortex V4 ((‘
CURVATURE LUMINANCE-INVARIANT bl
SELECTIVITY HUE
VENTRAL DORSAL
PATHWAY PATHWAY
T VX & X A
SIMPLE SHAPE ' JEA
ELEMENTE ANALYSIS OF SPACE
*
N e) ACTION PLANING
Tt ¢O €
COMPLEX FEATURE

CONFIGURATIONS

Deep Hierarchies in Optics

G1
60
E1 £ E3
s 2 Re o G3
K
r N\
e~ L}\C
E4 ES ¢ E11 7 E13 E15
E17
g \E10 £/ 16 £ L E20
Object Iris—_E7/ / / lsmoge
Space \\ pace
| = 7N
1 1
i 2 Y
50 7
Object / 15") 58]), (\\2{{5\527 28 29 \ 5 3
Plane P 2 32 J4 77 Image
w0 7772 /92/ 27 JWJ/ Plane
2 7
)
4 5
A vy Yk
- // \\ {\
Slow // \\ f

| \\
NN
/ Abemated — L
/ Prism \\ Wavefront Reference
Spherical
Wavefront

bon U\S,‘

Convolutional Neural Networks

Classic convolutional neural network (LeNet):

||=. ||_—.I|_|_— ".I_ N0

/ - Full connections
Convolutions Subsamplmg C onvolutlons Subsamplmg

* Visualizing the “activations” of the layers:

Input

jsmffmnx l
— http://scs.ryerson.ca/~aharley/vis/conv e - 2 ’\’[:.le ool
— https://youtu.be/AgkflQ4IGaM IR PR posli

= “ Es convelufions

maX (ao/ AC/

j- 3 ZD (m\A udIW\S

http://scs.ryerson.ca/~aharley/vis/conv

Next

* A very small selection of key advances, things you should know, and
tricks of the trade

Recent Lectures: Deep Learning

 We've been discussing neural network / deep learning models:

\/—_ v }'\(W(M),'\(W(M ”h((J)h(W(l)))))

* We discussed unprecedented vision/speech performance.

Image classification

03

Classification error

e We discussed methods to make SGD work better:

— Parameter initialization and data transformations. EEDETN e

— Setting the step size(s) in stochastic gradient and using momentum.

— Alternative non-linear functions like ReLU. moxf0,2:c§

'4"?(3.'()

“Residual” Networks (ResNets)

* Impactful recent idea is residual networks (ResNets):

weight layer
]—"(x) l relu N
weight layer identity

Figure 2. Residual learning: a building block.

— You can take previous (non-transformed) layer as input to current layer.
* Also called “skip connections” or “highway networks”.

— Non-linear part of the network only needs to model residuals.
* Non-linear parts are just “pushing up or down” a linear model in various places.

— This was a key idea behind first methods that used 100+ layers.
* Evidence that biological networks have skip connections like this.

bon U\S_(
DenseNet

* More recent variation is “DenseNets”:

— Each layer can see all the values from many previous layers.
— Gets rid of vanishing gradients.

— May get same performance
with fewer parameters/layers.

Figure 1: A 5-layer dense block with a growth rate of £k = 4.
https://arxiv.org/abs/1512.03385 Each layer takes all preceding feature-maps as input.

Deep Learning and the Fundamental Trade-Off

* Neural networks are subject to the fundamental trade-off:

— With increasing depth, training error of global optima decreases.
— With increasing depth, training error may poorly approximate test error.

 We want deep networks to model highly non-linear data.
— But increasing the depth can lead to overfitting.

* How could GooglLeNet use 22 layers?
— Many forms of regularization and keeping model complexity under control.
— Unlike linear models, typically use multiple types of regularization.

Standard Regularization
* Traditionally, we’ve added our usual L2-regularizers:
3 1) = 21 4 (3 2 ¢
£ W)= 4 5 (bW hw hw ONy) 4 AV SEN TV T R %
1= 2 2

e |L2-regularization often called “weight decay” in this context.

— Could also use L1-regularization: gives sparse network.

eeeeeeeeeeeee

||||||||||||

Standard Regularization

* Traditionally, we've added our usual L2-regularizers:

_F(v)\/\/(z))wm) Wu)); ll g (V-’L(WwMW(Z)L\(WU)X’-»)'\/;)K 4 -29 ”V"2+23”WM}';*%NWM”:"'?”Ww/g
i< 2 2

e L2-regularization often called “weight decay” in this context.
— Adds AW to gradient, so (S)GD “decays” the weights ‘W’ at each step
— Could also use L1-regularization: gives sparse network.

* Hyper-parameter optimization gets expensive:
— Try to optimize validation error in terms of Ay, A,, A3, A,.
— In addition to step-size, number of layers, size of layers, initialization.

* Recent result:
— Adding a regularizer in this way can create bad local optima.

Early Stopping

 Another common type of regularization is “early stopping”:

— Monitor the validation error as we run stochastic gradient.
— Stop the algorithm if validation error starts increasing.

A -
Error accuracy training accurac

\/'\-rof hAm'é‘y |+ VV\U’W’
validation accuracy:

little overfitting loolc more. [ike

Validation set

validation accuracy: strong overfitting

Training set /t/
0 Early Number of l\or'?n\’,y you thv\l‘}
stopping iterations

- S’&Or \\CIP.

epoch

bonuS,‘
Dropout -

* Dropout is a more recent form of explicit regularization:
— On each iteration, randomly set some x; and z, to zero (often use 50%).

®

Q‘.
>
Z

N/
\/

QA
»
v
A

,‘

No<
N 'e,
-0
AXY s""“‘““)
ORV
We\
)

Y
W
L%
e
N
Af\

X
X
CER
X
",

S

\\%
Q
(D)
$’,¢
/>
0';
I;
>

s

(a) Standard Neural Net (b) After applying dropout.
— Adds invariance to missing inputs or latent factors

* Encourages distributed representation rather than relying on specific z.
— Can be interpreted as an ensemble over networks with different parts missing.
— After a lot of early success, dropout is already kind of going out of fashion.

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
0.06} —Training H —Training
—Test (at convergence) 0.6l —Test (at convergence)
0.05f |
0.5¢ |
0.041 8
é § 0.4
g 0.03} T 0.3
0.02f 0.2
0.01f 0.1
0 0

4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Training goes to 0 with enough units: we’re finding a global min.

What should happen to training and test error for larger #hidden?

“Hidden” Regularization in Neural Networks

Fitting single-layer neural network with SGD and no regularization:

MNIST CIFAR-10
Y 07— — ——
0.06f —Training i —Training
—Test (at convergence) 0.6l —Test (at convergence)||
0.05¢ i
0.5¢ i
0.041 8
§ =§ 0.4r 1
g 0.03 T
0.02} 0.0
0.01f 0.1
94 8 16 32 64 128 256 512 1K 2K 4K 94 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

Test error continues to go down!?! Where is fundamental trade-off??

There exist global mins with large #hidden units have test error = 1.
— But among the global minima, SGD is somehow converging to “good” ones.

bom (AS,(

/\

Implicit Regularization of SGD

 There is growing evidence that using SGD regularizes parameters.
— We call this the “implicit regularization” of the optimization algorithm.

* Beyond empirical evidence, we know this happens in simpler cases.

 Example of implicit regularization:

— Consider a least squares problem where there exists a ‘w’ where X w = .
* Residuals are all zero, we fit the data exactly.
— You run [stochastic] gradient descent starting from w=0.

— Converges to solution X w =y that has the minimum L2-norm.
* So using SGD is equivalent to L2-regularization here, but regularization is “implicit”.

Implicit Regularization of SGD

 Example of implicit regularization:

— Consider a logistic regression problem where data is linearly separable.

* We can fit the data exactly.

— You run gradient descent from any starting point.

— Converges to max-margin solution of the problem.

* So using gradient descent is equivalent to encouraging large margin.

X

rrer

fect classifier wilh

im

m.r»

(lagget doferce to clores? example;)

Xit

e Similar result known for boosting.

bom (AS,(

/\

(pause)

Deep Learning “Tricks of the Trade”

* We’'ve discussed heuristics to make deep learning work:
— Parameter initialization and data transformations.
— Setting the step size(s) in stochastic gradient and using momentum.
— RestNets and alternative non-linear functions like RelLU.

— Different forms of regularization:
e L2-regularization, early stopping, dropout, implicit regularization from SGD.

* These are often still not enough to get deep models working.

* Deep computer vision models are all convolutional neural networks:
— The WM are very sparse and have repeated parameters (“tied weights”).
— Drastically reduces number of parameters (speeds training, reduces overfitting).

Summary

ResNets include untransformed previous layers.

— Network focuses non-linearity on residual, allows huge number of layers.

Regularization is crucial to neural net performance:
— L2-regularization, early stopping, dropout, implicit regularization of SGD.
Convolutional neural networks:

— Restrict W™ matrices to represent sets of convolutions.
— Often combined with max (pooling).

Next time: modern convolutional neural networks and applications.

— Image segmentation, depth estimation, image colorization, artistic style.

