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Last Time: E-mail Spam Filtering

° ° ° l » Jannie Keenan ualberta  You are owed $24,718.11
 Want a build a system that filters spam e-mails:
y p [} » Abby valberta USB Drives with your Logo
Rosemarie Page Re: New request created with ID: ##62
Shawna Bulger RE: New request created with ID: ##63
Gaay  ualberta Cooperation

 We formulated as supervised learning:
— (v, = 1) if e-mail i’ is spam, (y; = 0) if e-mail is not spam.
— (x; = 1) if word/phrase j’ is in e-mail ¥, (x; = 0) if it is not.
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Last Time: Naive Bayes

 We considered spam filtering methods based on naive Bayes:
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* Makes conditional independence assumption to make learning practical:
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* Predict “spam” if p(y; = “spam” | xi) > p(y; = “not spam” | x.).
— We don’t need p(x;) to test this.




Naive Bayes

* Naive Bayes formally:
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* Post-lecture slides: how to train/test by hand on a simple example.




Laplace Smoothing

* Our estimate of p(‘lactase’ = 1| ‘spam’) is:
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— But there is a problem if you have no spam messages with lactase:

* p(‘lactase’ | ‘spam’) = 0, so spam messages with lactase automatically get through.

— Common fix is Laplace smoothing: (Hsraw\ messages with ladmez + |

 Add 1 to numerator, L -I-)\
and 2 to denominator (for binary features). (#'Sf«aw\ V"\GSS"“‘)U7

— Acts like a “fake” spam example that has lactase,
and a “fake” spam example that doesn’t.




Laplace Smoothing

* Laplace smoothing: (Hspam messages wift ‘“MJ
C#sfaﬁessmr)) +2

— Typically you do this for all features.

* Helps against overfitting by biasing towards the uniform distribution.
A common variation is to use a real number B rather than 1.

— Add ‘Bk’ to denominator if feature has ‘k’ possible values (so it sums to 1).
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This is a “maximum a posteriori” (MAP) estimate of the probabiliy. We’ll discuss MAP and how to derive this formula later



Decision Theory

* Are we equally concerned about “spam” vs. “not spam”?
* True positives, false positives, false negatives, true negatives:

Predict / True
Predict ‘spam’ True Positive False Positive
Predict ‘not spam’ False Negative True Negative

* The costs mistakes might be different:

— Letting a spam message through (false negative) is not a big deal.
— Filtering a not spam (false positive) message will make users mad.



Decision Theory

* We can give a cost to each scenario, such as:

Predict / True
Predict ‘spam’

* Instead of most probable label, take . minimizing expected cost:
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* Even if “spam” has a higher probability,
predicting “spam” might have a higher expected cost.



Decision Theory Example

Predict / True
Predict ‘spam’ 0 100
Predict ‘not spam’ 10 0

* Consider a test example we have p(y, = “spam” | X.) = 0.6, then:
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* Even though “spam” is more likely, we should predict “not spam”.
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Decision Theory Discussion

In other applications, the costs could be different.

— In cancer screening, some false positives are ok,
but don’t want to have false negatives.

Decision theory and “darts”:
— http://www.datagenetics.com/blog/january12012/index.html

Decision theory and video poker:
— http://datagenetics.com/blog/july32019/index.html

Decision theory can help with “unbalanced” class labels:

— 1f 99% of e-mails are spam, you get 99% accuracy by always predicting “spam”.
— Decision theory approach avoids this.
— See also precision/recall curves and ROC curves in the bonus material.


http://www.datagenetics.com/blog/january12012/index.html
http://datagenetics.com/blog/july32019/index.html
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Decision Theory and Basketball -
 “How Mapping Shots In The NBA Changed It Forever”
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Unbalanced Class Labels

e Arelated is that of “unbalanced” class labels.

— 1f 99% of the e-mails are spam,
you can get 99% accuracy by always predicting spam.

* There are a variety of other performance measures available:
— Weighted classification error. 1

— Jaccard similarity.
— Precision and recall.

itive Rate

— False positive and false negative rate.
— ROC curves.

e See the post-lecture bonus slides for additional details.



(pause)



e Decision trees:

A A A

Decision Trees vs. Nalve Bayes

Sequence of rules based on 1 feature.
Training: 1 pass over data per depth.
Greedy splitting as approximation.
Testing: just look at features in rules.
New data: might need to change tree.

Accuracy: good if simple rules based on
individual features work (“symptoms”).

* Naive Bayes:
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Simultaneously combine all features.
Training: 1 pass over data to count.
Conditional independence assumption.
Testing: look at all features.

New data: just update counts.

Accuracy: good if features almost
independent given label (bag of words).



k-Nearest Neighbours (kNN)

* An old/simple classifier: k-nearest neighbours (kNN).

* To classify an example X::
1. Find the ‘k’ training examples x; that are “nearest” to X.,.
2. Classify using the most common label of “nearest” training examples.
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k-Nearest Neighbours (kNN)

* An old/simple classifier: k-nearest neighbours (kNN).
* To classify an example X::

1. Find the ‘k’ training examples x; that are “nearest” to X.,.
2. Classify using the most common label of “nearest” training examples.
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k-Nearest Neighbours (kNN)

* An old/simple classifier: k-nearest neighbours (kNN).

* To classify an example X::

1.

Find the ‘k’ training examples x; that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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k-Nearest Neighbours (kNN)

* An old/simple classifier: k-nearest neighbours (kNN).

* To classify an example X::

1.

Find the ‘k’ training examples x; that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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k-Nearest Neighbours (kNN)

* An old/simple classifier: k-nearest neighbours (kNN).

* To classify an example X::

1.

Find the ‘k’ training examples x; that are “nearest” to X..

2. Classify using the most common label of “nearest” training examples.
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k-Nearest Neighbours (kNN)

* Assumption:
— Examples with similar features are likely to have similar labels.

e Seems strong, but all good classifiers basically rely on this assumption.
— If not true there may be nothing to learn and you are in “no free lunch” territory.
— Methods just differ in how you define “similarity”.

e Most common distance function is Euclidean distance:
N e . NS

— X; is features of training example ‘i’, and X; is features of test example T’

— Costs O(d) to calculate for a pair of examples.



Effect of 'k’ in kKNN.

* With large ‘k’ (hyper-parameter), kNN model will be very simple.

— With k=n, you just predict the mode of the labels.
— Model gets more simple as ‘k’ increases.

K= k=3 k=10

e Effect of ‘k’ on fundamental trade-off:
— As ‘k’ grows, training error increases and approximation error decreases.



KNN Implementation

 There is no training phase in kNN (“lazy” learning).

— You just store the training data.
— Costs O(1) if you use a pointer.

e But predictions are expensive: O(nd) to classify 1 test example.

— Need to do O(d) distance calculation for all ‘n’ training examples.

— So prediction time grows with number of training examples.
* Tons of work on reducing this cost (we’ll discuss this later).

e But storage is expensive: needs O(nd) memory to store X’ and ‘y’.
— So memory grows with number of training examples.
— When storage depends on ‘n’, we call it a non-parametric model.



Parametric vs. Non-Parametric

e Parametric models:

— Have fixed number of parameters: trained “model” size is O(1) in terms ‘n’.
* E.g., naive Bayes just stores counts.
e E.g., fixed-depth decision tree just stores rules for that depth.

— You can estimate the fixed parameters more accurately with more data.
— But eventually more data doesn’t help: model is too simple.

* Non-parametric models:

|”

— Number of parameters grows with ‘n’: size of “model” depends on n’.

— Model gets more complicated as you get more data.

e E.g., kNN stores all the training data, so size of “model” is O(nd).
e E.g., decision tree whose depth grows with the number of examples.



Parametric vs. Non-Parametric Models

* Parametric models have bounded memory.
* Non-parametric models can have unbounded memory.
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Effect of ‘n” in KNN.

 With a small ‘n’, kKNN model will be very simple.
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* Model gets more complicated as ‘n’ increases.
— Requires more memory, but detects subtle differences between examples.
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Consistency of kNN (n = oo) -

* KNN has appealing consistency properties:

— As ‘n” goes to ==, KNN test error is at most twice the best possible error.
* For fixed ‘k” and binary labels (under mild assumptions).

e Stone’s Theorem: kNN is “universally consistent”.

— If k/n goes to zero and ‘k’ goes to oo, converges to the best possible error.
* For example, k = log(n).
* First algorithm shown to have this property.

e Does Stone’s Theorem violate the no free lunch theorem?
— No: it requires a continuity assumption on the labels.

— Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).
* The “speed” at which universal consistency happens is exponential in the dimension ‘d’.



https://www.naftaliharris.com/blog/asymptotics/

Curse of Dimensionality

* “Curse of dimensionality”: problems with high-dimensional spaces.

— Volume of space grows exponentially with dimension.
* Circle has area O(r?), sphere has area O(r3), 4d hyper-sphere has area O(r?),...

— Need exponentially more points to ‘fill’ a high-dimensional volume.
* “Nearest” neighbours might be really far even with large ‘n’.

* KNN is also problematic if features have very different scales.

— Comparing a feature measured in grams vs one measure in kilograms.
 Measurement in grams can have much more influence (values 1000 times larger).

* Nevertheless, KNN is really easy to use and often hard to beat!
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Consistency of Non-Parametric Models

* Universal consistency can be shown for many models in 340:

— “Linear” models with “polynomial” or “RBFs” as features (later).
— “Neural network” and “deep learning” models (also covered later).

e Butit’s always the non-parametric versions that are consistent:
— Where size of model is a function of ‘n’.

— Examples:
 KNN needs to store all ‘n’ training examples.
* Degree of the polynomial must grow with ‘n’ (not true for fixed polynomial).
 Number of “hidden units” must grow with ‘n’ (not true for fixed neural network).
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Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.
— Even with infinite ‘n’, may not be able to achieve optimal error (E, ).
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Parametric vs. Non-Parametric Models

* With parametric models, there is an accuracy limit.

— Even with infinite ‘n’, may not be able to achieve optimal error (E, ).

* Many non-parametric models (like kNN) converge to optimal error.
— Though may also.converge to needing infinite memory.




Summary

Decision theory allows us to consider costs of predictions.

K-Nearest Neighbours: use most common label of nearest examples.
 Often works surprisingly well.

e Suffers from high prediction and memory cost.

 (Canonical example of a “non-parametric” model.

 (Can suffer from the “curse of dimensionality”.

Non-parametric models grow with number of training examples.
- Can have appeallng ”COnSIStenCV” prOpertIes (testerrorgoes down to smallest possible error the model can make, as n

goes to infinity) .

Next Time:
* Fighting the fundamental trade-off.



Naive Bayes Training Phase

* Training a naive Bayes model:

T e b i O e O = O

IOF—*OOOP—‘F—*OP—*P—*I

:oooor—w—w—w—w—w—n:




Naive Bayes Training Phase

* Training a naive Bayes model:
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Naive Bayes Training Phase ply =6 o= 1 =6

* Training a naive Bayes model:
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Naive Bayes Training Phase ply =6 o= 1 =6

* Training a naive Bayes model:

0 (1

‘, Set N, To The Pumbrer of Times (\/,':C) 1 L nl

, _ 0 of | 1

A Estimate ply=c) s Ne, L 1

’5 §¢‘r ﬂc\')k as The V\WWLW of fimes (7i: C) Xi)':k) X — é é =
EilR
1 0 _ 0
1 1 hm—L‘ 0
_1 O_ 0
(. _0)346/ y\%:“\
P 5%



Naive Bayes Training Phase ply =6 o= 1 =6

* Training a naive Bayes model: 0 (1
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Naive Bayes Training Phase oy =6 o= 1 =6

* Training a naive Bayes model: 0 (T %
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:

Consider )/(V\:CI /:) % ths datn sef —
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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Naive Bayes Prediction Phase

* Prediction in a naive Bayes model:
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“Proportional to” for Probabilities

* When we say “p(y) « exp(-y?)” for a function ‘p’, we mean:

P(\/7: ﬁex,o(~y2) for some constant /ﬁ\

 However, if ‘p’ is a probability then it must sum to 1.

— Ify € {1,2,3,4} then P()) *ID {2)—;?(%)4—{)(;,/) - l

e Using this fact, we can find [:
ﬁCXV(_/Z)# /g@‘f(?l%L ,ge)('o [‘59‘*%@&#79:/
(‘:7 @[ E/(]a (']Z)‘L PA[)(_.T) +8/<'ﬂ (_,32) +€/<P (__ sz) _ l

<7 6= exp 1) teqp-7) teg (-3%) T exp (-¢7)




bon U\S_(

Probability of Paying Back a Loan and Ethics ™

Article discussing predicting “whether someone will pay back a loan”:

— https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-
application-reveal.html

Words that increase probability of paying back the most:
— debt-free, lower interest rate, after-tax, minimum payment, graduate.

Words that decrease probability of paying back the most:
— God, promise, will pay, thank you, hospital.

Article also discusses an important issue: are all these features ethical?

— Should you deny a loan because of religion or a family member in the hospital?
— ICBC is limited in the features it is allowed to use for prediction.


https://www.thecut.com/2017/05/what-the-words-you-use-in-a-loan-application-reveal.html
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Avoiding Underflow

* During the prediction, the probability can underflow:
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Less-Nalve Bayes

* Given features {x1,x2,x3,...,xd}, naive Bayes approximates p(y|x) as:
P(\/ ')f,)yz)..-)y4> ‘>< F(/) Z (X,) Yz).,.))g |\/> lff@olu(f ru/e a/flo/'/pa/ ”’MM/

— r(y> P(X, ’\/>r()(2 ’y')7>f(’(} ’YZ)X, )\/) T ,O(XJ /XUX?) ~~-))(J_,)y>
//\C F(\/> r()(, '\/) f(ll ly)r()(5 '7? T ,O(Xo/ ly} ('mive ﬂfﬂy-(_\ as)uw’j}av)
 The assumption is very strong, and there are “less naive” versions:

— Assume independence of all variables except up to ‘k’ largest ‘j” where j < i.

* E.g., naive Bayes has k=0 and with k=2 we would have:

* Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

— Another practical variation is “tree-augmented” naive Bayes.
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Computing p(x.) under naive Bayes

* Generative models don’t need p(x;) to make decisions.
* However, it’s easy to calculate under the naive Bayes assumption:
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Gaussian Discriminant Analysis

* Classifiers based on Bayes rule are called generative classifier:

— They often work well when you have tons of features.

— But they need to know p(x; | vy:), probability of features given the class.
 How to “generate” features, based on the class label.

* To fit generative models, usually make BIG assumptions:

— Naive Bayes (NB) for discrete x::
* Assume that each variables in x; is independent of the others in x; given y..

— Gaussian discriminant analysis (GDA) for continuous x..
* Assume that p(x; | y;) follows a multivariate normal distribution.
* If all classes have same covariance, it’s called “linear discriminant analysis”.
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Other Performance Measures

* Classification error might be wrong measure:

— Use weighted classification error if have different costs.
— Might want to use things like Jaccard measure: TP/(TP + FP + FN).

e Often, we report precision and recall (want both to be high):

— Precision: “if | classify as spam, what is the probability it actually is spam?”
* Precision = TP/(TP + FP).
* High precision means the filtered messages are likely to really be spam.

— Recall: “if a message is spam, what is probability it is classified as spam?”

e Recall =TP/(TP + FN)
* High recall means that most spam messages are filtered.



Precision-Recall Curve

* Consider the rule p(y, = ‘spam’ | x,) > t, for threshold ‘t’.
* Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.
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ROC Curve -

e Receiver operating characteristic (ROC) curve:

— Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
! —— (negative examples classified as positive)

True Positive Rate

Algorithm 1
A%goritpm 2 e

0 0.2 0.4 0.6 0.8 1

False Positive Rate

— Diagonal is random, perfect classifier would be in upper left.

— Sometimes papers report area under curve (AUC).
» Reflects performance for different possible thresholds on the probability.
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More on Unbalanced Classes

 With unbalanced classes, there are many alternatives to accuracy
as a measure of performance:

— Two common ones are the Jaccard coefficient and the F-score.

* Some machine learning models don’t work well with unbalanced
data. Some common heuristics to improve performance are:

— Under-sample the majority class (only take 5% of the spam messages).
e https://www.jair.org/media/953/live-953-2037-jair.pdf

— Re-weight the examples in the accuracy measure (multiply training error of
getting non-spam messages wrong by 10).

— Some notes on this issue are here.



https://www.jair.org/media/953/live-953-2037-jair.pdf
http://www.ele.uri.edu/faculty/he/research/ImbalancedLearning/ImbalancedLearning_lecturenotes.pdf
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More on Weirdness of High Dimensions

* In high dimensions:

— Distances become less meaningful:

* All vectors may have similar distances.

— Emergence of “hubs” (even with random data):

 Some datapoints are neighbours to many more points than average.

— Visualizing high dimensions and sphere-packing



https://www.youtube.com/watch?v=zwAD6dRSVyI

bonus,(
Vectorized Distance Calculation

* To classify ‘t’ test examples based on kNN, cost is O(ndt).

— Need to compare ‘n’ training examples to ‘t” test examples,
and computing a distance between two examples costs O(d).

* You can do this using matrix multiplication:
— Let D be a matrix such that D; contains:

“ﬁ‘XﬂP:,UJ”'*lxu}*“@NZ

where ‘i’ is a training example and ‘j’ is a test example.
— In numpy: (like sklearn.metrics.pairwise.euclidean distances)

(X1 ** ).sum(1)[:, np.newaxis] + (X2 ** ).sum( )[np.newaxis, :] - ~ * X1 @ X2.T

— Can be better than optimized C loops (scipy.spatial.distance.cdist)



https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.euclidean_distances.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html
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Condensed Nearest Neighbours ’
* Disadvantage of kNN is slow prediction time (depending on ‘n’).
 Condensed nearest neighbours:
— |ldentify a set of ‘m” “prototype” training examples.
— Make predictions by using these “prototypes” as the training data.
 Reduces runtime from O(nd) down to O(md).
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Condensed Nearest Neighbours

* Classic condensed nearest neighbours:

— Start with no examples among prototypes.
— Loop through the non-prototype examples ‘i’ in some order:

* Classify x; based on the current prototypes.
* If prediction is not the true y;, add it to the prototypes.

— Repeat the above loop until all examples are classified correctly.

 Some variants first remove points from the original data,
if a full-data KNN classifier classifies them incorrectly (“outliers’).



Condensed Nearest Neighbours

* Classic condensed nearest neighbours:

L ogf (A o ° . o - - . 5 % ° % o 2 8 2 5 a
o0 %éooo & S, ° ogf: o ° Ry @ ® . v P o g
1 o o ® gge.éeg = ® S SO o
q (A/ B & C;O ol ¢ " ° ° L] °%°° oo o =
] oo > ] * aa Lbd - : " o L]
@ ° se ] o ' oo =
o . “Jf?) o) )/'oc
© Ll r . 0o
° e @ 5 0 a =
@ @ ) {
E %mooogc 2 ® ® 2 - . [} O rﬁmu\/f a . lo 8 o O
° ® e o\ )

o o 2w o
® o @ @ @
. %’o ° B w e ? 1"/
o0 o og ) :
5 4 . s R )\ A owllier A o
- y °s (— " ¥) /Vlf 3 /V”) 17% 15% 68% X

u °do"
o@%oo

* Recent work shows that finding optimal compression is NP-hard.

— An approximation algorithm algorithm was published in 2018:
e “Near optimal sample compression for nearest neighbors”
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https://papers.nips.cc/paper/5528-near-optimal-sample-compression-for-nearest-neighbors.pdf

Approximate Nearest Neighbours

e Store data in a special data structure, e.g. k-d tree

— Partition points into regions, only check nearby regions
— Only helps for exact checks if n is at least about 2¢

— But making several trees on different projections
can give good approximations (that might miss true NNs)

* Locality-sensitive hashing

— Like traditional hashing but we try to get collisions for nearby points

— Simple method (SimHash): choose random hyperplanes, track which side

of each the result is on
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from vifeat docs



https://www.vlfeat.org/overview/kdtree.html
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Refined Fundamental Trade-Off -

* Let E, . be the irreducible error (lowest possible error for any model).
— For example, irreducible error for predicting coin flips is 0.5.

* Some learning theory results use E, . to further decompose E,.:

Etest = Cpr =Cinia) + (&40 ~Einy) + By
- — \_ , L~

~N ; ¢
éarrra\( EMoAt’ nolyg
* E,prox Measures how sensitive we are to training data.

* E..4e Measures if our model is complicated enough to fit data.

* E,.measures how low can any model make test error.
E .. does not depend on what model you choose.
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Consistency and Universal Consistency

* A model is consistent for a particular learning problem if:

— E..; cOnverges to E, .. as ‘n’” goes to infinity, for that particular problem.

* A model is universally consistent for a class of learning problems if:

— E... converges to E, ., as ‘n’ goes to infinity, for all problems in the class.

* Class of learning problems will usually be “all problems satisfying”:

— A continuity assumption on the labels y' as a function of x.
« E.g., if x'is close to x! then they are likely to receive the same label.

— A boundedness assumption of the set of x'.
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Consistency of KNN (Discrete/Deterministic Case)”

* Let’s show universal consistency of KNN in a simplified setting.

— The x" and y' are binary, and y' being a deterministic function of x.
* Deterministic y' implies that E, ., is O.

 Consider KNN with k=1:
— After we observe an x;, KNN makes right test prediction for that vector.
— As ‘n’ goes to oo, each feature vectors with non-zero probability is observed.
— We have E,.., = 0 once we've seen all feature vectors with non-zero probability.

* Notes:

— “No free lunch” isn’t relevant as ‘n’ goes to e=: we eventually see everything.
* But there are 29 possible feature vectors, so might need a huge number of training examples.

— It’s more complicated if labels aren’t deterministic and features are continuous.
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Consistency of Non-Parametric Models

e Universal consistency can be been shown for many models we’ll cover:
— Linear models with polynomial basis.
— Linear models with Gaussian RBFs.

— Neural networks with one hidden layer and standard activations.
e Sigmoid, tanh, RelU, etc.

e Butit’s always the non-parametric versions that are consistent:
— Where size of model is a function of ‘n’.

— Examples:
* KNN needs to store all ‘n’ training examples.
* Degree of polynomial must grow with ‘n’ (not true for fixed polynomial).
* Number of hidden units must grow with ‘n’ (not true for fixed neural network).



