
CPSC 340:
Machine Learning and Data Mining

Ensemble Methods
Spring 2022 (2021W2)

Admin
• Course webpage:
– https://github.com/UBC-CS/cpsc340-2021w1

• Assignment 2 is out
– Due Friday of next week. It’s long – start early
– Keep an eye on Piazza and/or commits on the site for updates/fixes

• Midterm
– Thursday Feb 17 (6 - 7:30 pm)
– Will be online
– You can take it from anywhere

https://github.com/UBC-CS/cpsc340-2021w1

Last Time: K-Nearest Neighbours (KNN)
• K-nearest neighbours algorithm for classifying !𝑥i:
– Find ‘k’ values of xi that are most similar to !𝑥i.
– Use mode of corresponding yi.

• Lazy learning:
– To “train” you just store X and y.

• Non-parametric:
– Size of model grows with ‘n’ (number of examples)

• Good short article on parametric vs. “non”
– Nearly-optimal test error with infinite data.

• But high prediction cost and may need large ‘n’ if ‘d’ is large.

https://sebastianraschka.com/faq/docs/parametric_vs_nonparametric.html

Defining “Distance” with “Norms”
• A common way to define the “distance” between examples:
– Take the “norm” of the difference between feature vectors.

• Norms are a way to measure the “length” of a vector.
– The most common norm is the “L2-norm” (or “Euclidean norm”):

– Here, the “norm” of the difference is the standard Euclidean distance.

L2-norm, L1-norm, and L∞-Norms.
• The three most common norms: L2-norm, L1-norm, and L∞-norm.
– Definitions of these norms with two-dimensions:

– Definitions of these norms in d-dimensions.

Infinite Series Video

https://www.youtube.com/watch?v=ineO1tIyPfM

Norm and Normp Notation (MEMORIZE)
• Notation:
– We often leave out the “2” for the L2-norm:

– We use superscripts for raising norms to powers:

– You should understand why all of the following quantities are equal:

Norms as Measures of Distance
• By taking norm of difference, we get a “distance” between vectors:

• Place different “weights” on large differences:
– L1: differences are equally notable.
– L2: bigger differences are more important (because of squaring).
– L∞: only biggest difference is important.

KNN Distance Functions
• Most common KNN distance functions: norm(xi – xj).
– L1-, L2-, and L∞-norm.
– Weighted norms (if some features are more important):
– “Mahalanobis” distance (takes into account correlations).

• See bonus slide for what functions define a “norm”.

• But we can consider other distance/similarity functions:
– Jaccard similarity (if xi are sets).
– Edit distance (if xi are strings).
– Metric learning (learn the best distance function).

Decision Trees vs. Naïve Bayes vs. KNN

Application: Optical Character Recognition
• To scan documents, we want to turn images into characters:
– “Optical character recognition” (OCR).

https://www.youtube.com/watch?v=IHZwWFHWa-w

Application: Optical Character Recognition
• To scan documents, we want to turn images into characters:
– “Optical character recognition” (OCR).

– Turning this into a supervised learning problem (with 28 by 28 images):

“3”

(1,1) (2,1) (3,1) … (28,1) (1,2) (2,2) … (14,14) … (28,28)

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

char

3

6

0

9

KNN for Optical Character Recognition

KNN for Optical Character Recognition

KNN for Optical Character Recognition

KNN for Optical Character Recognition

Human vs. Machine Perception
• There is huge difference between what we see and what KNN sees:

What we see: What the computer “sees”: Actually, it’s worse:

• Are these two images “similar”?

What the Computer Sees

• Are these two images “similar”?

• KNN does not know that labels should be translation invariant.

What the Computer Sees

Difference:

Encouraging Invariance
• May want classifier to be invariant to certain feature transforms.
– Images: translations, small rotations, changes in size, mild warping,…

• The hard/slow way is to modify your distance function:
– Find neighbours that require the “smallest” transformation of image.

• The easy/fast way is to just add transformed data during training:
– Add translated/rotate/resized/warped versions of training images.

– “Data augmentation”: crucial part of many successful vision systems.
– Also really important for sound (translate, change volume, and so on).

Application: Body-Part Recognition
• Microsoft Kinect:
– Real-time recognition of 31 body parts from laser depth data.

• How could we write a program to do this?

http://research.microsoft.com/pubs/158806/CriminisiForests_FoundTrends_2011.pdf

Some Ingredients of Kinect
1. Collect hundreds of thousands of labeled images (motion capture).
– Variety of pose, age, shape, clothing, and crop.

2. Build a simulator that fills space of images by making even more images.

3. Extract features of each location, that are cheap enough for real-time
calculation (depth differences between pixel and pixels nearby.)

4. Treat classifying body part of a pixel as a supervised learning problem.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

http://research.microsoft.com/pubs/145347/BodyPartRecognition.pdf

Supervised Learning Step
• ALL steps are important, but we’ll focus on the learning step.

• Do we have any classifiers that are accurate and run in real time?
– Decision trees and naïve Bayes are fast, but often not very accurate.
– KNN is often accurate, but not very fast.

• Deployed system uses an ensemble method called random forests.

Ensemble Methods
• Ensemble methods are classifiers that combine other classifiers.
• They have the best names:
– Averaging.
– Blending.
– Boosting.
– Bootstrapping.
– Bagging.
– Cascading.
– Random Forests.
– Stacking.
– Voting.

• Ensemble methods often have higher accuracy than input classifiers.

Ensemble Method Example: Voting
• Ensemble methods use predictions of a set of models.
– For example, we could use:

• Decision trees make one prediction.
• Naïve Bayes makes another prediction.
• KNN makes another prediction.

• One of the simplest ensemble methods is voting:
– Take the mode of the predictions across the classifiers.

Why can Voting Work?
• Consider 3 binary classifiers, each independently correct with probability 0.80:

• With voting, ensemble prediction is correct if we have “at least 2 right”:
– P(all 3 right) = 0.83 = 0.512.
– P(2 rights, 1 wrong) = 3*0.82(1-0.8) = 0.384.
– P(1 right, 2 wrongs) = 3*(1-0.8)20.8 = 0.096.
– P(all 3 wrong) = (1-0.8)3 = 0.008.
– So ensemble is right with probability 0.896 (which is 0.512+0.384).

• Notes:
– For voting to work, errors of classifiers need to be at least somewhat independent.
– You also want the probability of being right to be > 0.5, otherwise it can do much worse.
– Probabilities also shouldn’t be too different (otherwise, it might be better to take most accurate).

Why can Voting Work?
• Why can voting lead to better results?

• Consider classifiers that overfit (like deep decision trees):
– If they all overfit in exactly the same way, voting does nothing.

• But if they make independent errors:
– Probability that “vote” is wrong can be lower than for each classifier.
– Less attention to specific overfitting of each classifier.

Why can Voting Work?
• Consider a set of classifiers that make these predictions:
– Classifier 1: “spam”.
– Classifier 2: “spam”.
– Classifier 3: “spam”.
– Classifier 4: “not spam”.
– Classifier 5: “spam”.
– Classifier 6: “not spam”.
– Classifier 7: “spam”.
– Classifier 8: “spam”.
– Classifier 9: “spam”.
– Classifier 10: “spam”.

• If these independently get 80% accuracy, mode will be close to 100%.
– In practice errors won’t be completely independent (due to noise in labels).

Digression: Stacking
• Another variation on voting is stacking

– Fit another classifier that uses the predictions as features.

• Can tune second classifier using validation data.
– Sometimes called “blending”.

• Stacking often performs
better than individual models.
– Typically used by Kaggle winners.
– E.g., Netflix $1M user-rating competition winner was stacked classifier.

Random Forests
• Random forests take vote from a set of deep decision trees.
– Tend to be one of the best “out of the box” classifiers.

• Often close to the best performance of any method on the first run.
– And predictions are very fast.

• Do deep decision trees make independent errors?
– No: with the same training data you’ll get the same decision tree.

• Two key ingredients in random forests:
– Bootstrapping.
– Random trees.

Bootstrap Sampling
• Start with a standard deck of 52 cards:

1. Sample a random card:
(put it back and re-shuffle)

2. Sample a random card:
(put it back and re-shuffle)

3. Sample a random card:
(put it back and re-shuffle)

– …
52. Sample a random card:

(which may be a repeat)

• Makes a new deck of the 52 samples:
https://commons.wikimedia.org/wiki/File:English_pattern_playing_cards_deck.svg

Bootstrap Sampling
• New 52-card deck is called a

“bootstrap sample”:

– Some cards will be missing, and some cards will be duplicated.
• So calculations on the bootstrap sample will give different results than original data.

– However, the bootstrap sample roughly maintains trends:
• Roughly 25% of the cards will be diamonds.
• Roughly 3/13 of the cards will be “face” cards.
• There will be roughly four “10” cards.

– Common use: compute a statistic based on several bootstrap samples.
• Gives you an idea of how the statistic varies as you vary the data.

Random Forest Ingredient 1: Bootstrap
• Bootstrap sample of a list of ‘n’ examples:
– A new set of size ‘n’ chosen independently with replacement.

– Gives new dataset of ‘n’ examples, with some duplicated and some missing.
• For large ‘n’, approximately 63% of original examples are included.

• Bagging: using bootstrap samples for ensemble learning.
– Generate several bootstrap samples of the examples (xi, yi).
– Fit a classifier to each bootstrap sample.
– At test time, take vote based on the predictions.

Summary
• Encouraging invariance with data augmentation:
• Add transformed data to be insensitive to the transformation.

• Ensemble methods take multiplier classifiers as inputs.
• Voting ensemble method:
• Improves predictions of multiple classifiers if errors are independent.

• Bagging:
• Ensemble method where we apply same classifier to “bootstrap samples”.

• Next time:
• Unsupervised learning.

3 Defining Properties of Norms
• A “norm” is any function satisfying the following 3 properties:

1. Only ‘0’ has a ‘length’ of zero.
2. Multiplying ‘r’ by constant ‘α’ multiplies length by |α|
• “If be will twice as long if you multiply by 2”: ||αr|| = |α|•||r||.
• Implication is that norms cannot be negative.

3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:
• “You can’t get there faster by a detour”.
• “Triangle inequality”: ||r + s|| ≤ ||r|| + ||s||.

Squared/Euclidean-Norm Notation

Lp-norms
• The L1-, L2-, and L∞-norms are special cases of Lp-norms:

• This gives a norm for any (real-valued) p ≥ 1.
– The L∞-norm is the limit as ‘p’ goes to ∞.

• For p < 1, not a norm because triangle inequality not satisfied.

https://en.wikipedia.org/wiki/Lp_space

Why does Bootstrapping select approximately 63%?

• Probability of an arbitrary xi being selected in a bootstrap sample:

Why Averaging Works
• Consider ‘k’ independent classifiers, whose errors have a variance of σ2.
• If the errors are IID, the variance of the vote is σ2/k.
– So the more classifiers that vote, the more you decrease error variance.

(And the more the training error approximates the test error.)

• Generalization to case where classifiers are not independent is:

– Where ‘c’ is the correlation.

• So the less correlation you have the closer you get to independent case.
• Randomization in random forests decreases correlation between trees.
– See also “Sensitivity of Independence Assumptions”.

https://www.naftaliharris.com/blog/sensitivity-of-independence-assumption/

How these concepts often show up in practice
• Here is a recent e-mail related to many ideas we’ve recently covered:

– “However, the performance did not improve while the model goes deeper and with
augmentation. The best result I got on validation set was 80% with LeNet-5 and NO
augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 50 layer
structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract
numerical information for me, so I trained the same dataset with nearly 100 features on
random forest with 500 trees. The accuracy was 90% on validation set.

I really don't understand that how could deep learning perform worse as the number of
hidden layers increases, in addition to that I have changed from VGG to ResNet, which
are theoretically trained differently. Moreover, why deep learning algorithm cannot
surpass machine learning algorithm?”

• Above there is data augmentation, validation error, effect of the fundamental
trade-off, the no free lunch theorem, and the effectiveness of random forests.

