-
Notifications
You must be signed in to change notification settings - Fork 13
/
bert_influence.py
382 lines (343 loc) · 17.4 KB
/
bert_influence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
from __future__ import absolute_import, division, print_function
import argparse
import csv
import logging
import os
import random
import sys
import pickle
import time
import math
# os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import numpy as np
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertPreTrainedModel, BertModel, BertConfig, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
import torch.autograd as autograd
from bert_util import *
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--task",
default=None,
type=str,
required=True,
help="Sentiment analysis or natural language inference? (SA or NLI)")
## Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--trained_model_dir",
default="",
type=str,
help="Where is the fine-tuned (with the cloze-style LM objective) BERT model?")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--freeze_bert',
action='store_true',
help="Whether to freeze BERT")
parser.add_argument('--full_bert',
action='store_true',
help="Whether to use full BERT")
parser.add_argument('--num_train_samples',
type=int,
default=-1,
help="-1 for full train set, otherwise please specify")
parser.add_argument('--damping',
type=float,
default=0.0,
help="probably need damping for deep models")
parser.add_argument('--test_idx',
type=int,
default=1,
help="test index we want to examine")
parser.add_argument('--influence_on_decision',
action='store_true',
help="Whether to compute influence on decision (rather than influence on ground truth)")
parser.add_argument("--if_compute_saliency",
default=1,
type=int)
parser.add_argument('--start_test_idx',
type=int,
default=-1,
help="when not -1, --test_idx will be disabled")
parser.add_argument('--end_test_idx',
type=int,
default=-1,
help="when not -1, --test_idx will be disabled")
parser.add_argument("--lissa_repeat",
default=1,
type=int)
parser.add_argument("--lissa_depth",
default=1.0,
type=float)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.influence_on_decision:
raise ValueError("To use loss function w.r.t. the ground truth, manually disable this error in the code.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
#raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
logger.info("WARNING: Output directory already exists and is not empty.")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
mnli_processor = MnliProcessor()
hans_processor = HansProcessor()
sst_processor = Sst2Processor()
if args.task == "SA":
label_list = sst_processor.get_labels()
elif args.task == "NLI":
label_list = mnli_processor.get_labels()
elif args.task == "NLI_negation":
label_list = mnli_processor.get_labels()
elif args.task == "NLI_natural":
label_list = mnli_processor.get_labels()
num_labels = len(label_list)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
# Prepare model
model = MyBertForSequenceClassification.from_pretrained(args.trained_model_dir, num_labels=num_labels)
if args.fp16:
raise ValueError("Not sure if FP16 precision works yet.")
model.half()
model.to(device)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# for n, p in param_optimizer:
# print(n)
# sys.exit()
if args.freeze_bert:
frozen = ['bert']
elif args.full_bert:
frozen = []
else:
frozen = ['bert.embeddings.',
'bert.encoder.layer.0.',
'bert.encoder.layer.1.',
'bert.encoder.layer.2.',
'bert.encoder.layer.3.',
'bert.encoder.layer.4.',
'bert.encoder.layer.5.',
'bert.encoder.layer.6.',
'bert.encoder.layer.7.',
] # *** change here to filter out params we don't want to track ***
param_influence = []
for n, p in param_optimizer:
if (not any(fr in n for fr in frozen)):
param_influence.append(p)
elif 'bert.embeddings.word_embeddings.' in n:
pass # need gradients through embedding layer for computing saliency map
else:
p.requires_grad = False
param_shape_tensor = []
param_size = 0
for p in param_influence:
tmp_p = p.clone().detach()
param_shape_tensor.append(tmp_p)
param_size += torch.numel(tmp_p)
logger.info(" Parameter size = %d", param_size)
if args.task == "SA":
train_examples = sst_processor.get_train_examples(args.data_dir, args.num_train_samples)
elif args.task == "NLI":
train_examples = mnli_processor.get_train_examples(args.data_dir, args.num_train_samples)
elif args.task == "NLI_negation":
train_examples = mnli_processor.get_train_examples(args.data_dir, args.num_train_samples)
elif args.task == "NLI_natural":
train_examples = mnli_processor.get_train_examples(args.data_dir, args.num_train_samples)
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Train set *****")
logger.info(" Num examples = %d", len(train_examples))
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_id = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
all_guids = torch.tensor([f.guid for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_id, all_guids)
train_dataloader_wbatch = DataLoader(train_data, sampler=SequentialSampler(train_data), batch_size=args.train_batch_size)
train_dataloader = DataLoader(train_data, sampler=SequentialSampler(train_data), batch_size=1)
if args.task == "SA":
test_examples = sst_processor.get_dev_examples(args.data_dir)
elif args.task == "NLI":
test_examples = hans_processor.get_test_examples(args.data_dir)
elif args.task == "NLI_negation":
test_examples = hans_processor.get_neg_test_examples(args.data_dir)
elif args.task == "NLI_natural":
test_examples = mnli_processor.get_dev_examples(args.data_dir)
test_features = convert_examples_to_features(
test_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Test set *****")
logger.info(" Num examples = %d", len(test_examples))
all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long)
all_label_id = torch.tensor([f.label_id for f in test_features], dtype=torch.long)
all_guids = torch.tensor([f.guid for f in test_features], dtype=torch.long)
test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_id, all_guids)
test_dataloader = DataLoader(test_data, sampler=SequentialSampler(test_data), batch_size=1)
damping = args.damping
test_idx = args.test_idx
start_test_idx = args.start_test_idx
end_test_idx = args.end_test_idx
for input_ids, input_mask, segment_ids, label_ids, guids in test_dataloader:
model.eval()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_dataloader_lissa = DataLoader(train_data, batch_size=args.train_batch_size, shuffle=True, drop_last=True)
guid = guids[0].item() # test set loader must have a batch size of 1 now
if start_test_idx != -1 and end_test_idx != -1:
if guid < start_test_idx:
continue
if guid > end_test_idx:
break
else:
if guid < test_idx:
continue
if guid > test_idx:
break
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
######## GET TEST EXAMPLE DECISION ########
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
outputs = np.argmax(logits, axis=1)
pred_label_ids = torch.from_numpy(outputs).long().to(device)
if label_ids.item() == pred_label_ids.item():
test_pred_status = "correct"
else:
test_pred_status = "wrong"
if args.influence_on_decision:
label_ids = torch.from_numpy(outputs).long().to(device)
################
######## L_TEST GRADIENT ########
model.zero_grad()
test_loss = model(input_ids, segment_ids, input_mask, label_ids)
test_grads = autograd.grad(test_loss, param_influence)
################
######## TEST EXAMPLE SALIENCY MAP ########
if args.if_compute_saliency:
saliency_scores = saliency_map(model, input_ids, segment_ids, input_mask, pred_label_ids)
test_tok_sal_list = []
for tok, sal in zip(tokenizer.convert_ids_to_tokens(input_ids.view(-1).cpu().numpy()), saliency_scores):
if tok == '[PAD]':
break
test_tok_sal_list.append((tok, sal))
################
######## IHVP ########
model.train()
logger.info("######## START COMPUTING IHVP ########")
inverse_hvp = get_inverse_hvp_lissa(test_grads, model, device, param_influence, train_dataloader_lissa, damping=damping, num_samples=args.lissa_repeat, recursion_depth=int(len(train_examples)*args.lissa_depth))
logger.info("######## FINISHED COMPUTING IHVP ########")
################
influences = np.zeros(len(train_dataloader.dataset))
train_tok_sal_lists = []
for train_idx, (_input_ids, _input_mask, _segment_ids, _label_ids, _) in enumerate(tqdm(train_dataloader, desc="Train set index")):
model.train()
_input_ids = _input_ids.to(device)
_input_mask = _input_mask.to(device)
_segment_ids = _segment_ids.to(device)
_label_ids = _label_ids.to(device)
######## L_TRAIN GRADIENT ########
model.zero_grad()
train_loss = model(_input_ids, _segment_ids, _input_mask, _label_ids)
train_grads = autograd.grad(train_loss, param_influence)
influences[train_idx] = torch.dot(inverse_hvp, gather_flat_grad(train_grads)).item()
################
######## TRAIN EXAMPLE SALIENCY MAP ########
# if args.if_compute_saliency:
# with torch.no_grad():
# logits = model(_input_ids, _segment_ids, _input_mask)
# logits = logits.detach().cpu().numpy()
# outputs = np.argmax(logits, axis=1)
# _pred_label_ids = torch.from_numpy(outputs).long().to(device)
# saliency_scores = saliency_map(model, _input_ids, _segment_ids, _input_mask, _pred_label_ids)
# train_tok_sal_list = []
# for tok, sal in zip(tokenizer.convert_ids_to_tokens(_input_ids.view(-1).cpu().numpy()), saliency_scores):
# if tok == '[PAD]':
# break
# train_tok_sal_list.append((tok, sal))
# train_tok_sal_lists.append(train_tok_sal_list)
################
if args.influence_on_decision:
pickle.dump(influences, open(os.path.join(args.output_dir, "influences_test_" + str(guid) + ".pkl"), "wb"))
else:
pickle.dump(influences, open(os.path.join(args.output_dir, "influences_on_x_test_" + str(guid) + ".pkl"), "wb"))
if args.if_compute_saliency:
pickle.dump((test_tok_sal_list, train_tok_sal_lists, test_pred_status), open(os.path.join(args.output_dir, "saliency_test_" + str(guid) + ".pkl"), "wb"))
if __name__ == "__main__":
main()