-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
194 lines (157 loc) · 4.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import numpy as np
import torch
import shutil
import torchvision.transforms as transforms
from torch.autograd import Variable
from genotypes import PRIMITIVES
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import json
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0/batch_size))
return res
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def _data_transforms_cifar10(args):
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform
def _data_transforms_imagenet():
# imagenet
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
val_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD),
])
return val_transform
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name)/1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path, map_location='cuda:0'):
model.load_state_dict(torch.load(model_path, map_location))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob))
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.makedirs(path)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
subpath = os.path.join(path, 'scripts')
if not os.path.exists(subpath):
os.mkdir(subpath)
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
def save_file(recoder, size = (14, len(PRIMITIVES)), path='./'):
fig, axs = plt.subplots(*size, figsize=(36, 98))
num_ops = size[1]
row = 0
col = 0
for (k, v) in recoder.items():
axs[row, col].set_title(k)
axs[row, col].plot(v, 'r+')
if col == num_ops-1:
col = 0
row += 1
else:
col += 1
if not os.path.exists(path):
os.makedirs(path)
fig.savefig(os.path.join(path, 'output.png'), bbox_inches='tight')
plt.tight_layout()
print('save history weight in {}'.format(os.path.join(path, 'output.png')))
with open(os.path.join(path, 'history_weight.json'), 'w') as outf:
json.dump(recoder, outf)
print('save history weight in {}'.format(os.path.join(path, 'history_weight.json')))
def convert_arch_weights_to_numpy(arch_weights, k=14, num_ops=len(PRIMITIVES)):
# key = ['edge: (%d, %d), op: %s' %(i,j,op) for op in PRIMITIVES for i in range(3) for j in range(5)]
# get last epoch alpha
alphas=np.zeros((k, num_ops))
mm = 0
last_id = 1
node_id = 0
for i in range(k):
for j in range(num_ops):
alphas[i,j] = arch_weights['edge: {}, op: {}'.format((node_id, mm), PRIMITIVES[j])][-1]
if mm == last_id:
mm = 0
last_id += 1
node_id += 1
else:
mm += 1
return alphas
def load_arch_weights(model, arch_weights_dir):
for sub in ['normal', 'reduce']:
_file = os.path.join(arch_weights_dir, sub, 'history_weight.json')
with open(_file, 'r') as f:
arch_weights = json.load(f)
arch_weights = convert_arch_weights_to_numpy(arch_weights)
if sub == 'normal':
d_ = model.alphas_normal.detach()
d_.copy_(torch.as_tensor(arch_weights))
else:
d_ = model.alphas_reduce.detach()
d_.copy_(torch.as_tensor(arch_weights))