Skip to content

Latest commit

 

History

History
33 lines (18 loc) · 1.38 KB

README.md

File metadata and controls

33 lines (18 loc) · 1.38 KB

PyTorch_DDP

测试配置

model = resnet18,dataset = ImageNet,epoch = 5, batch_size = 1200,GPUs_num = 3 @TITAN Xp

CUDA_VISIBLE_DEVICES=0,1,2 python dataparallel.py

CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node=3 --master_port=23334 distributed.py

CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node=3 --master_port=23334 distributed_syncBN_amp.py

测试结果

Method Memory (MB) Time (s) ImageNet Top1 Acc(%)
DataParallel 11329 7633 46.71
DistributedDataParallel 11329 4612 46.83
DistributedDataParallel + amp 8679 4680 46.74
DistributedDataParallel + amp + SyncBN 8679 8173 46.78

注: SyncBN: 同步BN(pytorch自带); amp: 自动混合精度训练(pytorch自带)

结论

(1)SyncBN 会影响训练速度,且在图像分类中作用不大,进行目标检测和图像分割时使用

(2)amp 可大大降低模型的内存占用,但可能在小模型上加速效果不明显

(3)一般情况下,使用 DistributedDataParallel 即可