-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhaplotype_generation.py
643 lines (520 loc) · 23.7 KB
/
haplotype_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import numpy as np
import pandas as pd
import multiprocessing as mp
import subprocess
import time
import re
import sys
import cvxpy as cp
from sklearn.neighbors import kneighbors_graph
from scipy.sparse import csgraph
from scipy.spatial.distance import pdist, squareform
from sklearn import preprocessing
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import fcluster
import community as community_louvain
import networkx as nx
def find_ld(i,snps,cutoff,window_size): ###find the correlation of every SNP to a window
n_inds,n_snps = snps.shape
left = max(i - window_size, 0) #define the boundary of the interval
right = min(i + window_size,n_snps) #define the boundary of the interval
left_snps_window = snps[:,left:(i+1)]
right_snps_window = snps[:,i:(right+1)]
left_cor = np.matmul(np.transpose(left_snps_window),snps[:,i])/n_inds
left_cor_rev = np.flip(left_cor)
right_cor = np.matmul(np.transpose(right_snps_window),snps[:,i])/n_inds
left_list_ = np.where(left_cor_rev**2 > cutoff)[0]
for j in range(len(left_list_)-1):
if left_list_[j+1] - left_list_[j] > 25:
left_list_ = left_list_[:j+1]
break
left_list_ = np.flip(left_list_) * -1
right_list_ = np.where(right_cor**2 > cutoff)[0]
for j in range(len(right_list_)-1):
if right_list_[j+1] - right_list_[j] > 25:
right_list_ = right_list_[:j+1]
break
SNPinLD_index = np.unique(np.concatenate((left_list_, right_list_))) + i
return(SNPinLD_index)
def CompleteLDPartition(standardized_genotype_matrix,cutoff,window_size):
#define variables
n_inds,n_snps = standardized_genotype_matrix.shape
snp_list = {}
cummax_list = []
max_list = []
boundary = []
alone_SNPs_index = []
for i in range(n_snps):
snp_list[i] = find_ld(i,snps=standardized_genotype_matrix,cutoff=0.1,window_size=50)
if len(snp_list[i]) == 1:
alone_SNPs_index.append(i)
if len(alone_SNPs_index) > 0:
print("QUALITY CHECK: identify %d snps that are not in LD (r2 < %f) with its 50 up/downstream neighbours. You may consider remove these SNPs" %(len(alone_SNPs_index),0.1))
print("window_size is %d, and the correlation cutoff is %f" %(window_size, cutoff))
for i in range(n_snps):
snp_list[i] = find_ld(i,snps=standardized_genotype_matrix,cutoff=cutoff,window_size=window_size)
for i in range(len(snp_list)):
if len(snp_list[i]) > 0:
max_list.append(np.max(snp_list[i]))
else:
max_list.append(i)
cummax_list.append(max_list[0])
for i in range(1,len(max_list)):
if max_list[i] > cummax_list[i-1]:
cummax_list.append(max_list[i])
else:
cummax_list.append(cummax_list[i-1])
idx = np.where( cummax_list - np.array(range(n_snps)) == 0)
idx = idx[0]
boundary_ = np.concatenate(([-1],np.array(idx)))
for i in range(len(boundary_)-1):
left = boundary_[i]+1
right = boundary_[i+1]
if right - left > 0:
boundary.append([left,right])
else:
boundary.append([left])
j = 0
while j < len(boundary):
if len(boundary[j]) == 1:
if j ==0:
boundary[j+1][0] = boundary[j][0]
del boundary[j]
else:
boundary[j-1][1] = boundary[j][0]
del boundary[j]
else:
j += 1
return(boundary,alone_SNPs_index)
def BigLD_partition(DIR,IndepLD_breakpoints_index,geno_matrix,variant_names,variant_positions,CLQcut,prefix):
fine_breakpoints_ch = []
#generate geno and SNPinfo for BigLD
for I in range(len(IndepLD_breakpoints_index)):
left = IndepLD_breakpoints_index[I][0]
right = IndepLD_breakpoints_index[I][1]
tmp_names = variant_names[left:right+1]
tmp_positions = variant_positions[left:right+1]
tmp_matrix = pd.DataFrame(geno_matrix[:,left:right+1],columns= tmp_names)
tmp_matrix.to_csv(prefix+"_"+str(I)+"_geno_matrix"+".btmp",sep="\t",header=True,index=False)
INFO = open(prefix+"_"+str(I)+"_snpINFO"+".btmp","w")
INFO.write("chrN\trsID\tbp\n")
for j in range(len(tmp_positions)):
INFO.write(str(1)+"\t"+str(tmp_names[j])+"\t"+str(tmp_positions[j])+"\n")
INFO.close()
BigLD_command = "Rscript "+DIR+"/BigLD.R -g "+prefix+"_"+str(I)+"_geno_matrix"+".btmp"+ " -s "+prefix+"_"+str(I)+"_snpINFO"+".btmp" + " -c " + str(CLQcut) + " -o " + prefix+"_"+str(I)
try:
blocks = []
subprocess.check_call(BigLD_command,shell=True)
tmp_file = prefix+"_"+str(I)+"_res_btmp.txt"
with open(tmp_file,"r") as INPUT:
header = INPUT.readline()
for line in INPUT:
items = line.split("\t")
blocks.append([variant_positions.index(int(items[5])),variant_positions.index(int(items[6]))])
print("hellow",right,blocks)
blocks[-1][1] = right
fine_breakpoints_ch.extend(blocks)
except subprocess.CalledProcessError as e:
print("BigLD cannot further partition blocks in this region %i - %i" %(left,right))
fine_breakpoints_ch.append(IndepLD_breakpoints_index[I])
rm_command = "rm "+prefix+"_"+str(I)+"_*btmp*"
subprocess.check_call(rm_command,shell = True)
return(fine_breakpoints_ch)
def convert_independent_genomewide_breakpoints(common_breakpoints,common_index,r):
gw_breakpoints = []
for i in range(len(common_breakpoints)): ## there is a small bug issue when the first or the last snp is the block itself
if len(common_breakpoints[i]) == 1:
if common_breakpoints[i][0] == 0:
left = 0
right = common_index[common_breakpoints[i+1][0]] -1
else:
left = common_index[common_breakpoints[i][0] -1] + 1
right = common_index[common_breakpoints[i][0]]
else:
common_left = common_breakpoints[i][0]
common_right = common_breakpoints[i][1]
#print(common_left,common_right)
if common_left == 0:
left = 0
right = common_index[common_right]
elif common_right == len(common_index) -1:
left = common_index[common_left - 1] + 1
right = r -1
else:
left = common_index[common_left - 1] + 1
right = common_index[common_right]
gw_breakpoints.append([left,right])
j = 0
while j < len(gw_breakpoints):
if gw_breakpoints[j][1] - gw_breakpoints[j][0] < 2000:
if j == 0:
gw_breakpoints[j+1] = [gw_breakpoints[j][0],gw_breakpoints[j+1][1]]
del gw_breakpoints[j]
else:
gw_breakpoints[j-1] = [gw_breakpoints[j-1][0],gw_breakpoints[j][1]]
del gw_breakpoints[j]
else:
j += 1
return(gw_breakpoints)
def convert_fine_genomewide_breakpoints(common_breakpoints,common_index,r,gw_independent_breakpoints):
IndepLD_breakpoints = []
for k in range(len(gw_independent_breakpoints)):
IndepLD_breakpoints.append(gw_independent_breakpoints[k][0])
IndepLD_breakpoints.append(gw_independent_breakpoints[k][1])
print("IndepLD_breakpoints",IndepLD_breakpoints)
gw_breakpoints = []
for i in range(len(common_breakpoints)): #SHOULD NOT HAPPEN BUT IF HAPPENED THERE COULD BE A SMALL BUG
common_left = common_breakpoints[i][0]
common_right = common_breakpoints[i][1]
if i == 0:
left = 0
right = common_index[common_right]
elif i == len(common_breakpoints) -1:
common_left_prev = common_breakpoints[i-1][1]
left = common_index[common_left_prev] + 1
right = r -1
else:
common_left_prev = common_breakpoints[i-1][1]
left = common_index[common_left_prev] + 1
right = common_index[common_right]
gw_breakpoints.append([left,right])
j = 0
print("before",len(gw_breakpoints),gw_breakpoints)
while j < len(gw_breakpoints):
if gw_breakpoints[j][1] - gw_breakpoints[j][0] < 6:
print("you motherfucker",gw_breakpoints[j])
if gw_breakpoints[j][0] in IndepLD_breakpoints or gw_breakpoints[j][1] in IndepLD_breakpoints:
print("WTF",gw_breakpoints[j])
print("left,right,you son of bitch",IndepLD_breakpoints)
if j == 0:
gw_breakpoints[j+1] = [gw_breakpoints[j][0],gw_breakpoints[j+1][1]]
del gw_breakpoints[j]
else:
j += 1
else:
gw_breakpoints[j-1] = [gw_breakpoints[j-1][0],gw_breakpoints[j][1]]
del gw_breakpoints[j]
else:
j += 1
print("after",len(gw_breakpoints),gw_breakpoints)
return(gw_breakpoints)
def custom_fine_partition(block):
genomewide_breakpoints = {}
with open(block, "r") as f:
for line in f:
line = line.strip("\n")
items = line.split("\t")
ch = items[0]
if ch not in genomewide_breakpoints:
genomewide_breakpoints[ch] = [[int(items[1]),int(items[2])]]
else:
genomewide_breakpoints[ch].append([int(items[1]),int(items[2])])
return(genomewide_breakpoints)
def snp_table_construction(ch,haplotypes,pos,reference,alternative):
dedup_haplotypes = haplotypes.drop_duplicates(keep = 'first')
r,c = dedup_haplotypes.shape
header = [ch,"Ref"]
header.extend(list(np.arange(r)))
snp_table_list = [header]
for i in range(c):
snp_numeric = np.array(dedup_haplotypes.iloc[:,i])
snp_i = [pos[i],reference[i]]
for j in range(len(snp_numeric)):
if snp_numeric[j] == 0:
snp_i.append(reference[i])
else:
snp_i.append(alternative[i])
snp_table_list.append(snp_i)
snp_table = pd.DataFrame(snp_table_list)
return(snp_table,dedup_haplotypes)
def find_nearest(np_array, value):
array = np.asarray(np_array)
idx = (np.abs(np_array - value)).argmin()
return(idx)
def haplotype_frequency_estimation(ch,block_partition,hap_matrix_d1,hap_matrix_d2,reference_alleles,alternative_alleles,variant_positions,variant_names,bam,reference_file,prefix):
snp_frequency = []
haplotype_frequency = {}
hap_matrix_d1_pd = pd.DataFrame(np.transpose(hap_matrix_d1),columns=variant_names)
hap_matrix_d2_pd = pd.DataFrame(np.transpose(hap_matrix_d2),columns=variant_names)
r,c = hap_matrix_d1.shape
for i in range(len(block_partition)):
left = block_partition[i][0]
right = block_partition[i][1]
hap1 = hap_matrix_d1_pd[variant_names[left:right+1]]
hap2 = hap_matrix_d2_pd[variant_names[left:right+1]]
haplotypes = pd.concat([hap1,hap2],ignore_index=True)
snp_table,dedup_haplotypes = snp_table_construction(ch,haplotypes,variant_positions[left:right+1],reference_alleles[left:right+1],alternative_alleles[left:right+1])
snp_table_name = prefix+ "_"+"snp_table_"+str(ch)+"_"+str(i)+".txt"
snp_table.to_csv(snp_table_name,sep=",",header=False,index = False)
read_left_bound = max(variant_positions[left]-100,1)
read_right_bound = min(variant_positions[right]+100,variant_positions[-1])
like_command = "harp like --bam "+ bam + " --region "+str(ch)+":"+str(read_left_bound)+ \
"-"+str(read_right_bound)+" --refseq "+ reference_file + " --snps "+snp_table_name +" --stem " + prefix+"_"+str(ch)+"_"+str(i)
subprocess.check_call(like_command,shell=True)
freq_command = "harp freq --hlk " + prefix + "_" +str(ch)+"_"+str(i)+".hlk" + " --region "+str(ch)+":"+str(read_left_bound)+ \
"-"+str(read_right_bound)
try:
subprocess.check_call(freq_command,shell=True)
with open(prefix+ "_"+ str(ch)+"_"+str(i)+".freqs","r") as FREQ:
line = FREQ.readline()
line = line.strip("\n")
items = line.split(" ")
haplotype_frequency[i] = [float(items[i]) for i in range(3,len(items)-1)]
snp_frequency.extend(np.matmul(haplotype_frequency[i],np.asarray(dedup_haplotypes)))
except subprocess.CalledProcessError as e:
print("There is no reads mapped to this region %i - %i" %(read_left_bound,read_right_bound))
d_r,d_c = dedup_haplotypes.shape
haplotype_frequency[i] = np.repeat(1.0/d_r,d_r)
snp_frequency.extend(np.matmul(haplotype_frequency[i],np.asarray(dedup_haplotypes)))
rm_command = "rm -r " + prefix + "_" + str(ch)+"_"+str(i)+"* " + snp_table_name
subprocess.check_call(rm_command,shell=True)
return(snp_frequency,haplotype_frequency)
def ecotype_frequency_estimation(gw_independent_breakpoints,independent_block_haplotype_frequency,hap_matrix_d1,hap_matrix_d2,variant_names,variant_positions):
ecotype_frequency = np.zeros((len(gw_independent_breakpoints),hap_matrix_d1.shape[1]))
haplotype_frequency = {}
hap_matrix_d1_pd = pd.DataFrame(np.transpose(hap_matrix_d1),columns=variant_names)
hap_matrix_d2_pd = pd.DataFrame(np.transpose(hap_matrix_d2),columns=variant_names)
weights = []
length = []
for i in range(len(gw_independent_breakpoints)):
left = gw_independent_breakpoints[i][0]
right = gw_independent_breakpoints[i][1]
hap1 = hap_matrix_d1_pd[variant_names[left:right+1]]
hap2 = hap_matrix_d2_pd[variant_names[left:right+1]]
haplotypes = pd.concat([hap1,hap2],ignore_index=True)
dedup_haplotypes = np.asarray(haplotypes.drop_duplicates(keep = 'first'))
length.append(dedup_haplotypes.shape[0])
dictionary = {}
for j in range(dedup_haplotypes.shape[0]):
unique_haplotype_ = "".join(map(str,dedup_haplotypes[j,:]))
dictionary[unique_haplotype_] = j
independent_haplotype_DM_ = np.zeros((hap1.shape[0],dedup_haplotypes.shape[0]))
for k in range(hap1.shape[0]):
tmp_1 = "".join(map(str,hap1.values[k,:]))
tmp_2 = "".join(map(str,hap2.values[k,:]))
l_1 = dictionary[tmp_1]
l_2 = dictionary[tmp_2]
independent_haplotype_DM_[k,l_1] += 1
independent_haplotype_DM_[k,l_2] += 1
y = np.asarray(independent_block_haplotype_frequency[i]) * 2
h = cp.Variable(hap1.shape[0])
product = independent_haplotype_DM_.T @ h
diff = product - y
constraints = [0 <= h,sum(h) == 1]
problem = cp.Problem(cp.Minimize(cp.norm(diff)),constraints)
problem.solve(solver = 'SCS',verbose=False)
ecotype_frequency[i,:] = h.value
weights.append(variant_positions[right] - variant_positions[left])
ecotype_frequency_avg = np.average(ecotype_frequency,axis=0,weights = weights)
return(ecotype_frequency_avg)
def ecotype_frequency_estimation_selected(gw_independent_breakpoints,independent_block_haplotype_frequency,hap_matrix_d1,hap_matrix_d2,variant_names,variant_positions):
ecotype_frequency = np.zeros((len(gw_independent_breakpoints),hap_matrix_d1.shape[1]))
haplotype_frequency = {}
hap_matrix_d1_pd = pd.DataFrame(np.transpose(hap_matrix_d1),columns=variant_names)
hap_matrix_d2_pd = pd.DataFrame(np.transpose(hap_matrix_d2),columns=variant_names)
weights = []
length = []
for i in range(len(gw_independent_breakpoints)):
left = gw_independent_breakpoints[i][0]
right = gw_independent_breakpoints[i][1]
hap1 = hap_matrix_d1_pd[variant_names[left:right+1]]
hap2 = hap_matrix_d2_pd[variant_names[left:right+1]]
haplotypes = pd.concat([hap1,hap2],ignore_index=True)
dedup_haplotypes = np.asarray(haplotypes.drop_duplicates(keep = 'first'))
dictionary = {}
for j in range(dedup_haplotypes.shape[0]):
unique_haplotype_ = "".join(map(str,dedup_haplotypes[j,:]))
dictionary[unique_haplotype_] = j
independent_haplotype_DM_ = np.zeros((hap1.shape[0],dedup_haplotypes.shape[0]))
for k in range(hap1.shape[0]):
tmp_1 = "".join(map(str,hap1.values[k,:]))
tmp_2 = "".join(map(str,hap2.values[k,:]))
l_1 = dictionary[tmp_1]
l_2 = dictionary[tmp_2]
independent_haplotype_DM_[k,l_1] += 1
independent_haplotype_DM_[k,l_2] += 1
y = np.asarray(independent_block_haplotype_frequency[i]) * 2
h = cp.Variable(hap1.shape[0])
product = independent_haplotype_DM_.T @ h
diff = product - y
constraints = [0 <= h,sum(h) == 1]
problem = cp.Problem(cp.Minimize(cp.norm(diff)),constraints)
problem.solve(solver = 'SCS',verbose=False)
ecotype_frequency[i,:] = h.value
length.append(dedup_haplotypes.shape[0])
# if dedup_haplotypes.shape[0] < hap1.shape[0] * 0.9:
# weights.append(0)
# else:
# weights.append(variant_positions[right] - variant_positions[left])
#ecotype_frequency_avg = np.average(ecotype_frequency,axis=0,weights = weights)
return(ecotype_frequency,length)
def ecotype_frequency_estimation_lasso(gw_independent_breakpoints,independent_block_haplotype_frequency,hap_matrix_d1,hap_matrix_d2,variant_names,variant_positions,lambd):
ecotype_frequency = np.zeros((len(gw_independent_breakpoints),hap_matrix_d1.shape[1]))
haplotype_frequency = {}
hap_matrix_d1_pd = pd.DataFrame(np.transpose(hap_matrix_d1),columns=variant_names)
hap_matrix_d2_pd = pd.DataFrame(np.transpose(hap_matrix_d2),columns=variant_names)
weights = []
length = []
for i in range(len(gw_independent_breakpoints)):
left = gw_independent_breakpoints[i][0]
right = gw_independent_breakpoints[i][1]
hap1 = hap_matrix_d1_pd[variant_names[left:right+1]]
hap2 = hap_matrix_d2_pd[variant_names[left:right+1]]
haplotypes = pd.concat([hap1,hap2],ignore_index=True)
dedup_haplotypes = np.asarray(haplotypes.drop_duplicates(keep = 'first'))
dictionary = {}
for j in range(dedup_haplotypes.shape[0]):
unique_haplotype_ = "".join(map(str,dedup_haplotypes[j,:]))
dictionary[unique_haplotype_] = j
independent_haplotype_DM_ = np.zeros((hap1.shape[0],dedup_haplotypes.shape[0]))
for k in range(hap1.shape[0]):
tmp_1 = "".join(map(str,hap1.values[k,:]))
tmp_2 = "".join(map(str,hap2.values[k,:]))
l_1 = dictionary[tmp_1]
l_2 = dictionary[tmp_2]
independent_haplotype_DM_[k,l_1] += 1
independent_haplotype_DM_[k,l_2] += 1
y = np.asarray(independent_block_haplotype_frequency[i]) * 2
h = cp.Variable(hap1.shape[0])
product = independent_haplotype_DM_.T @ h
diff = product - y
constraints = [0 <= h,sum(h) == 1]
problem = cp.Problem(cp.Minimize(cp.norm2(diff)**2 + lambd*cp.norm1(h)),constraints)
problem.solve(solver = 'SCS',verbose=False)
ecotype_frequency[i,:] = h.value
weights.append(variant_positions[right] - variant_positions[left])
ecotype_frequency_avg = np.average(ecotype_frequency,axis=0,weights = weights)
return(ecotype_frequency_avg)
def Spectral_clustering(np_array):
r,c =np_array.shape
k = max(int(r/20),5)
dists = squareform(pdist(np_array))
knn_distances = np.sort(dists, axis=0)[k]
knn_distances = knn_distances[np.newaxis].T
local_scale = knn_distances.dot(knn_distances.T)
affinity_matrix = - dists * dists / local_scale
affinity_matrix[np.where(np.isnan(affinity_matrix))] = 0.0
affinity_matrix = np.exp(affinity_matrix)
np.fill_diagonal(affinity_matrix, 0)
L = csgraph.laplacian(affinity_matrix,normed = True)
eig_val, eig_vec = np.linalg.eig(L)
eig_val = np.real(eig_val)
eig_vec = np.real(eig_vec)
eig_vec = eig_vec[:,np.argsort(eig_val)]
eig_val = eig_val[np.argsort(eig_val)]
if sum(np.iscomplex(eig_val)) > 0:
print("Spectral Clustering failed. Clusters are assigned by affinity_propagation.")
print(np_array.shape)
labels = affinity_propagation(np_array)
if labels[0] == -1 or max(labels) == 0:
labels = np.arange(np_array.shape[0])
print("Affinity propagation failed")
else:
index_largest_gap = np.argsort(np.diff(eig_val))[::-1][0]
#print(index_largest_gap)
n_clusters = index_largest_gap + 2
V = eig_vec[:,:n_clusters]
Z = linkage(V, 'ward')
labels = fcluster(Z, n_clusters, criterion='maxclust') - 1
return(labels)
def haplotypes_clustering(np_array,algorithm):
if algorithm == "spectral_clustering":
clusters = Spectral_clustering(np_array)
else:
sys.exit("Unknown haplotype clustering algorithm")
return(clusters)
def fine_haplotype_frequency_calculation(block_partitions,gw_independent_breakpoints,independent_block_haplotype_frequency,gw_breakpoints,hap_matrix_d1,hap_matrix_d2,variant_names,variant_positions,snp_frequency,ch):
unique_haplotype_frequency = []
haplotype_cluster_frequency = []
vcf_haplotype_frequency = []
unique_haplotype_names = []
haplotype_cluster_names = []
vcf_haplotype_cluster_frequency = []
columns = []
if gw_breakpoints[-1][1] != len(snp_frequency)-1:
print(gw_breakpoints[-1][1],len(snp_frequency))
sys.exit("The number of SNPs and genome wide partitions dont match!")
else:
hap_matrix_d1_pd = pd.DataFrame(np.transpose(hap_matrix_d1),columns=variant_names)
hap_matrix_d2_pd = pd.DataFrame(np.transpose(hap_matrix_d2),columns=variant_names)
unique_haplotype_DM = pd.DataFrame(index=range(hap_matrix_d1_pd.shape[0]),columns=columns)
clustered_haplotype_DM = pd.DataFrame(index=range(hap_matrix_d1_pd.shape[0]),columns=columns)
for key in block_partitions:
ind_left = gw_independent_breakpoints[key][0]
ind_right = gw_independent_breakpoints[key][1]
ind_hap1 = hap_matrix_d1_pd[variant_names[ind_left:ind_right+1]]
ind_hap2 = hap_matrix_d2_pd[variant_names[ind_left:ind_right+1]]
ind_haplotypes = pd.concat([ind_hap1,ind_hap2],ignore_index=True)
ind_dedup_haplotypes = np.asarray(ind_haplotypes.drop_duplicates(keep = 'first'))
ind_haplotype_freq = independent_block_haplotype_frequency[key]
for i in range(len(block_partitions[key])):
left = block_partitions[key][i][0]
right = block_partitions[key][i][1]
hap1 = hap_matrix_d1_pd[variant_names[left:right+1]]
hap2 = hap_matrix_d2_pd[variant_names[left:right+1]]
haplotypes = pd.concat([hap1,hap2],ignore_index=True)
dedup_haplotypes = np.asarray(haplotypes.drop_duplicates(keep = 'first'))
relative_left = left - ind_left
relative_right = right - ind_left
block_snp_frequency = snp_frequency[left:right+1]
r,c = dedup_haplotypes.shape
# unique haplotype frequency calculations
unique_haplotype_DM_ = np.zeros((r,len(ind_haplotype_freq)))
dictionary = {}
for j in range(r):
unique_haplotype_ = "".join(map(str,dedup_haplotypes[j,:]))
dictionary[unique_haplotype_] = j
# generate the design matrix
for k in range(len(ind_haplotype_freq)):
tmp = "".join(map(str,ind_dedup_haplotypes[k,relative_left:relative_right+1]))
l = dictionary[tmp]
unique_haplotype_DM_[l,k] += 1
unique_haplotype_freq_ = np.matmul(unique_haplotype_DM_,ind_haplotype_freq)
#calculate the VCF based haplotype frequency
vcf_haplotype_DM_ = np.zeros((hap1.shape[0],r))
for k in range(hap1.shape[0]):
tmp_1 = "".join(map(str,hap1.values[k,:]))
tmp_2 = "".join(map(str,hap2.values[k,:]))
l_1 = dictionary[tmp_1]
l_2 = dictionary[tmp_2]
vcf_haplotype_DM_[k,l_1] += 1
vcf_haplotype_DM_[k,l_2] += 1
vcf_haplotype_freq_ = np.sum(vcf_haplotype_DM_,axis=0) / haplotypes.shape[0]
unique_haplotype_names_ = [ch+"@"+str(variant_positions[left])+"-"+str(variant_positions[right])+'_'+str(l) for l in range(r)]
#unique_haplotype_DM_ =pd.DataFrame(unique_haplotype_DM_,columns=haplotype_names_)
#unique_haplotype_DM = pd.concat([unique_haplotype_DM,unique_haplotype_DM_],axis=1,ignore_index=True)
# cluster unique haplotypes into haplotype clusters and then calculate cluster frequencies
if dedup_haplotypes.shape[0] > 10:
clusters = haplotypes_clustering(dedup_haplotypes,algorithm = "spectral_clustering")
else:
clusters = np.arange(dedup_haplotypes.shape[0])
haplotype_cluster_names_ = [ch+"@"+str(variant_positions[left])+"-"+str(variant_positions[right])+'_'+"haplotype_cluster"+str(l) for l in range(max(clusters)+1)]
haplotype_cluster_frequency_ = []
for i in range(max(clusters)+1):
index = np.where(clusters == i)[0]
haplotype_cluster_frequency_.append(sum(unique_haplotype_freq_[index]))
#generate haplotype cluster design matrix
dictionary = {}
for j in range(r):
unique_haplotype_ = "".join(map(str,dedup_haplotypes[j,:]))
dictionary[unique_haplotype_] = clusters[j]
haplotype_cluster_DM_ = np.zeros((hap1.shape[0],max(clusters)+1))
for k in range(hap1.shape[0]):
tmp_1 = "".join(map(str,hap1.values[k,:]))
tmp_2 = "".join(map(str,hap2.values[k,:]))
l_1 = dictionary[tmp_1]
l_2 = dictionary[tmp_2]
haplotype_cluster_DM_[k,l_1] += 1
haplotype_cluster_DM_[k,l_2] += 1
vcf_haplotype_cluster_freq_ = np.sum(haplotype_cluster_DM_,axis=0) / haplotypes.shape[0]
haplotype_cluster_DM_ =pd.DataFrame(haplotype_cluster_DM_,columns=haplotype_cluster_names_)
clustered_haplotype_DM = pd.concat([clustered_haplotype_DM,haplotype_cluster_DM_],axis=1,ignore_index=True)
print("predicted",haplotype_cluster_frequency_)
print("true",vcf_haplotype_cluster_freq_)
unique_haplotype_frequency.extend(unique_haplotype_freq_)
haplotype_cluster_frequency.extend(haplotype_cluster_frequency_)
vcf_haplotype_frequency.extend(vcf_haplotype_freq_)
unique_haplotype_names.extend(unique_haplotype_names_)
haplotype_cluster_names.extend(haplotype_cluster_names_)
vcf_haplotype_cluster_frequency.extend(vcf_haplotype_cluster_freq_)
return(unique_haplotype_frequency,vcf_haplotype_frequency,unique_haplotype_names,haplotype_cluster_frequency,haplotype_cluster_names,vcf_haplotype_cluster_frequency)