-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_config.py
47 lines (39 loc) · 1.87 KB
/
train_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from torch import optim
from datasets.coco import CocoDetection
from transforms import presets
from optimizer import param_dict
# Commonly changed training configurations
num_epochs = 12 # train epochs
batch_size = 2 # total_batch_size = #GPU x batch_size
num_workers = 4 # workers for pytorch DataLoader
pin_memory = True # whether pin_memory for pytorch DataLoader
print_freq = 50 # frequency to print logs
starting_epoch = 0
max_norm = 0.1 # clip gradient norm
output_dir = None # path to save checkpoints, default for None: checkpoints/{model_name}
find_unused_parameters = False # useful for debugging distributed training
# define dataset for train
coco_path = "data/coco" # /PATH/TO/YOUR/COCODIR
train_transform = presets.detr # see transforms/presets to choose a transform
train_dataset = CocoDetection(
img_folder=f"{coco_path}/train2017",
ann_file=f"{coco_path}/annotations/instances_train2017.json",
transforms=train_transform,
train=True,
)
test_dataset = CocoDetection(
img_folder=f"{coco_path}/val2017",
ann_file=f"{coco_path}/annotations/instances_val2017.json",
transforms=None, # the eval_transform is integrated in the model
)
# model config to train
model_path = "configs/salience_detr/salience_detr_resnet50_800_1333.py"
# specify a checkpoint folder to resume, or a pretrained ".pth" to finetune, for example:
# checkpoints/salience_detr_resnet50_800_1333/train/2024-03-22-09_38_50
# checkpoints/salience_detr_resnet50_800_1333/train/2024-03-22-09_38_50/best_ap.pth
resume_from_checkpoint = None
learning_rate = 1e-4 # initial learning rate
optimizer = optim.AdamW(lr=learning_rate, weight_decay=1e-4, betas=(0.9, 0.999))
lr_scheduler = optim.lr_scheduler.MultiStepLR(milestones=[10], gamma=0.1)
# This define parameter groups with different learning rate
param_dicts = param_dict.finetune_backbone_and_linear_projection(lr=learning_rate)