-
Notifications
You must be signed in to change notification settings - Fork 740
/
fec.go
449 lines (394 loc) · 12.6 KB
/
fec.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
// The MIT License (MIT)
//
// Copyright (c) 2015 xtaci
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// THE GENERALIZED REED-SOLOMON FEC SCHEME
//
// Encoding:
// -----------
// Message: | M1 | M2 | M3 | M4 |
// Generate Parity: | P1 | P2 |
// Encoded Codeword:| M1 | M2 | M3 | M4 | P1 | P2 |
//
// Decoding with Erasures:
// ------------------------
// Received: | M1 | ?? | M3 | M4 | P1 | ?? |
// Erasures: | | E1 | | | | E2 |
// Syndromes: S1, S2, ...
// Error Locator: Λ(x) = ...
// Correct Erasures:Determine values for E1 (M2) and E2 (P2).
// Corrected: | M1 | M2 | M3 | M4 | P1 | P2 |
package kcp
import (
"encoding/binary"
"sync/atomic"
"time"
"github.com/klauspost/reedsolomon"
)
const (
fecHeaderSize = 6
fecHeaderSizePlus2 = fecHeaderSize + 2 // plus 2B data size
typeData = 0xf1
typeParity = 0xf2
fecExpire = 60000
rxFECMulti = 3 // FEC keeps rxFECMulti* (dataShard+parityShard) ordered packets in memory
)
// fecPacket is a decoded FEC packet
type fecPacket []byte
func (bts fecPacket) seqid() uint32 { return binary.LittleEndian.Uint32(bts) }
func (bts fecPacket) flag() uint16 { return binary.LittleEndian.Uint16(bts[4:]) }
func (bts fecPacket) data() []byte { return bts[6:] }
// fecElement has auxcilliary time field
type fecElement struct {
fecPacket
ts uint32
}
// fecDecoder for decoding incoming packets
type fecDecoder struct {
rxlimit int // queue size limit
dataShards int
parityShards int
shardSize int
rx []fecElement // ordered receive queue
// caches
decodeCache [][]byte
flagCache []bool
// RS decoder
codec reedsolomon.Encoder
// auto tune fec parameter
autoTune autoTune
shouldTune bool
}
func newFECDecoder(dataShards, parityShards int) *fecDecoder {
if dataShards <= 0 || parityShards <= 0 {
return nil
}
dec := new(fecDecoder)
dec.dataShards = dataShards
dec.parityShards = parityShards
dec.shardSize = dataShards + parityShards
dec.rxlimit = rxFECMulti * dec.shardSize
codec, err := reedsolomon.New(dataShards, parityShards)
if err != nil {
return nil
}
dec.codec = codec
dec.decodeCache = make([][]byte, dec.shardSize)
dec.flagCache = make([]bool, dec.shardSize)
return dec
}
// decode a fec packet
func (dec *fecDecoder) decode(in fecPacket) (recovered [][]byte) {
// sample to auto FEC tuner
if in.flag() == typeData {
dec.autoTune.Sample(true, in.seqid())
} else {
dec.autoTune.Sample(false, in.seqid())
}
// check if FEC parameters is out of sync
if int(in.seqid())%dec.shardSize < dec.dataShards {
if in.flag() != typeData { // expect typeData
dec.shouldTune = true
}
} else {
if in.flag() != typeParity {
dec.shouldTune = true
}
}
// if signal is out-of-sync, try to detect the pattern in the signal
if dec.shouldTune {
autoDS := dec.autoTune.FindPeriod(true)
autoPS := dec.autoTune.FindPeriod(false)
// edges found, we can tune parameters now
if autoDS > 0 && autoPS > 0 && autoDS < 256 && autoPS < 256 {
// and make sure it's different
if autoDS != dec.dataShards || autoPS != dec.parityShards {
dec.dataShards = autoDS
dec.parityShards = autoPS
dec.shardSize = autoDS + autoPS
dec.rxlimit = rxFECMulti * dec.shardSize
codec, err := reedsolomon.New(autoDS, autoPS)
if err != nil {
return nil
}
dec.codec = codec
dec.decodeCache = make([][]byte, dec.shardSize)
dec.flagCache = make([]bool, dec.shardSize)
dec.shouldTune = false
//log.Println("autotune to :", dec.dataShards, dec.parityShards)
}
}
}
// parameters in tuning
if dec.shouldTune {
return nil
}
// insertion
n := len(dec.rx) - 1
insertIdx := 0
for i := n; i >= 0; i-- {
if in.seqid() == dec.rx[i].seqid() { // de-duplicate
return nil
} else if _itimediff(in.seqid(), dec.rx[i].seqid()) > 0 { // insertion
insertIdx = i + 1
break
}
}
// make a copy
pkt := fecPacket(xmitBuf.Get().([]byte)[:len(in)])
copy(pkt, in)
elem := fecElement{pkt, currentMs()}
// insert into ordered rx queue
if insertIdx == n+1 {
dec.rx = append(dec.rx, elem)
} else {
dec.rx = append(dec.rx, fecElement{})
copy(dec.rx[insertIdx+1:], dec.rx[insertIdx:]) // shift right
dec.rx[insertIdx] = elem
}
// shard range for current packet
// NOTE: the shard sequence number starts at 0, so we can use mod operation
// to find the beginning of the current shard.
// ALWAYS ALIGNED TO 0
shardBegin := pkt.seqid() - pkt.seqid()%uint32(dec.shardSize)
shardEnd := shardBegin + uint32(dec.shardSize) - 1
// Define max search range in ordered queue for current shard
searchBegin := insertIdx - int(pkt.seqid()%uint32(dec.shardSize))
if searchBegin < 0 {
searchBegin = 0
}
searchEnd := searchBegin + dec.shardSize - 1
if searchEnd >= len(dec.rx) {
searchEnd = len(dec.rx) - 1
}
// check if we have enough shards to recover, if so, we can recover the data and free the shards
// if not, we can keep the shards in memory for future recovery.
if searchEnd-searchBegin+1 >= dec.dataShards {
var numshard, numDataShard, first, maxlen int
// zero working set for decoding
shards := dec.decodeCache
shardsflag := dec.flagCache
for k := range dec.decodeCache {
shards[k] = nil
shardsflag[k] = false
}
// lookup shards in range [searchBegin, searchEnd] to the working set
for i := searchBegin; i <= searchEnd; i++ {
seqid := dec.rx[i].seqid()
// the shard seqid must be in [shardBegin, shardEnd], i.e. the current FEC group
if _itimediff(seqid, shardEnd) > 0 {
break
} else if _itimediff(seqid, shardBegin) >= 0 {
shards[seqid%uint32(dec.shardSize)] = dec.rx[i].data()
shardsflag[seqid%uint32(dec.shardSize)] = true
numshard++
if dec.rx[i].flag() == typeData {
numDataShard++
}
if numshard == 1 {
first = i
}
if len(dec.rx[i].data()) > maxlen {
maxlen = len(dec.rx[i].data())
}
}
}
// case 1: if there's no loss on data shards
if numDataShard == dec.dataShards {
dec.rx = dec.freeRange(first, numshard, dec.rx)
} else if numshard >= dec.dataShards { // case 2: loss on data shards, but it's recoverable from parity shards
// make the bytes length of each shard equal
for k := range shards {
if shards[k] != nil {
dlen := len(shards[k])
shards[k] = shards[k][:maxlen]
clear(shards[k][dlen:])
} else if k < dec.dataShards {
// prepare memory for the data recovery
shards[k] = xmitBuf.Get().([]byte)[:0]
}
}
// Reed-Solomon recovery
if err := dec.codec.ReconstructData(shards); err == nil {
for k := range shards[:dec.dataShards] {
if !shardsflag[k] {
// recovered data should be recycled
recovered = append(recovered, shards[k])
}
}
}
// Free the shards in FIFO immediately
dec.rx = dec.freeRange(first, numshard, dec.rx)
}
}
// keep rxlimit in FIFO order
if len(dec.rx) > dec.rxlimit {
if dec.rx[0].flag() == typeData {
// track the effectiveness of FEC
atomic.AddUint64(&DefaultSnmp.FECShortShards, 1)
}
dec.rx = dec.freeRange(0, 1, dec.rx)
}
// FIFO timeout policy
current := currentMs()
numExpired := 0
for k := range dec.rx {
if _itimediff(current, dec.rx[k].ts) > fecExpire {
numExpired++
continue
}
break
}
if numExpired > 0 {
dec.rx = dec.freeRange(0, numExpired, dec.rx)
}
return
}
// free a range of fecPacket
func (dec *fecDecoder) freeRange(first, n int, q []fecElement) []fecElement {
for i := first; i < first+n; i++ { // recycle buffer
xmitBuf.Put([]byte(q[i].fecPacket))
}
// if n is small, we can avoid the copy
if first == 0 && n < cap(q)/2 {
return q[n:]
}
// on the other hand, we shift the tail
copy(q[first:], q[first+n:])
return q[:len(q)-n]
}
// release all segments back to xmitBuf
func (dec *fecDecoder) release() {
if n := len(dec.rx); n > 0 {
dec.rx = dec.freeRange(0, n, dec.rx)
}
}
type (
// fecEncoder for encoding outgoing packets
fecEncoder struct {
dataShards int
parityShards int
shardSize int
paws uint32 // Protect Against Wrapped Sequence numbers
next uint32 // next seqid
shardCount int // count the number of datashards collected
maxSize int // track maximum data length in datashard
headerOffset int // FEC header offset
payloadOffset int // FEC payload offset
// caches
shardCache [][]byte
encodeCache [][]byte
tsLatestPacket int64
// RS encoder
codec reedsolomon.Encoder
}
)
func newFECEncoder(dataShards, parityShards, offset int) *fecEncoder {
if dataShards <= 0 || parityShards <= 0 {
return nil
}
enc := new(fecEncoder)
enc.dataShards = dataShards
enc.parityShards = parityShards
enc.shardSize = dataShards + parityShards
enc.paws = 0xffffffff / uint32(enc.shardSize) * uint32(enc.shardSize)
enc.headerOffset = offset
enc.payloadOffset = enc.headerOffset + fecHeaderSize
codec, err := reedsolomon.New(dataShards, parityShards)
if err != nil {
return nil
}
enc.codec = codec
// caches
enc.encodeCache = make([][]byte, enc.shardSize)
enc.shardCache = make([][]byte, enc.shardSize)
for k := range enc.shardCache {
enc.shardCache[k] = make([]byte, mtuLimit)
}
return enc
}
// encodes the packet, outputs parity shards if we have collected quorum datashards
// notice: the contents of 'ps' will be re-written in successive calling
func (enc *fecEncoder) encode(b []byte, rto uint32) (ps [][]byte) {
// The header format:
// | FEC SEQID(4B) | FEC TYPE(2B) | SIZE (2B) | PAYLOAD(SIZE-2) |
// |<-headerOffset |<-payloadOffset
enc.markData(b[enc.headerOffset:])
binary.LittleEndian.PutUint16(b[enc.payloadOffset:], uint16(len(b[enc.payloadOffset:])))
// copy data from payloadOffset to fec shard cache
sz := len(b)
enc.shardCache[enc.shardCount] = enc.shardCache[enc.shardCount][:sz]
copy(enc.shardCache[enc.shardCount][enc.payloadOffset:], b[enc.payloadOffset:])
enc.shardCount++
// track max datashard length
if sz > enc.maxSize {
enc.maxSize = sz
}
// Generation of Reed-Solomon Erasure Code
now := time.Now().UnixMilli()
if enc.shardCount == enc.dataShards {
// generate the rs-code only if the data is continuous.
if now-enc.tsLatestPacket < int64(rto) {
// fill '0' into the tail of each datashard
for i := 0; i < enc.dataShards; i++ {
shard := enc.shardCache[i]
slen := len(shard)
clear(shard[slen:enc.maxSize])
}
// construct equal-sized slice with stripped header
cache := enc.encodeCache
for k := range cache {
cache[k] = enc.shardCache[k][enc.payloadOffset:enc.maxSize]
}
// encoding
if err := enc.codec.Encode(cache); err == nil {
ps = enc.shardCache[enc.dataShards:]
for k := range ps {
enc.markParity(ps[k][enc.headerOffset:])
ps[k] = ps[k][:enc.maxSize]
}
} else {
// record the error, and still keep the seqid monotonic increasing
atomic.AddUint64(&DefaultSnmp.FECErrs, 1)
enc.next = (enc.next + uint32(enc.parityShards)) % enc.paws
}
} else {
// through we do not send non-continuous parity shard, we still increase the next value
// to keep the seqid aligned with 0 start
enc.next = (enc.next + uint32(enc.parityShards)) % enc.paws
}
// counters resetting
enc.shardCount = 0
enc.maxSize = 0
}
enc.tsLatestPacket = now
return
}
// put a stamp on the FEC packet header with seqid and type
func (enc *fecEncoder) markData(data []byte) {
binary.LittleEndian.PutUint32(data, enc.next)
binary.LittleEndian.PutUint16(data[4:], typeData)
enc.next = (enc.next + 1) % enc.paws
}
func (enc *fecEncoder) markParity(data []byte) {
binary.LittleEndian.PutUint32(data, enc.next)
binary.LittleEndian.PutUint16(data[4:], typeParity)
enc.next = (enc.next + 1) % enc.paws
}