-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathco_train.py
554 lines (478 loc) · 18.3 KB
/
co_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
"""Training script"""
import os
import time
import copy
import shutil
import random
import logging
import numpy as np
import torch
import scipy.stats as stats
from sklearn.mixture import GaussianMixture
from evaluation import evalrank
from data import get_loader, get_dataset
from model import SGRAF
from vocab import Vocabulary, deserialize_vocab
from evaluation import i2t, t2i, encode_data, shard_attn_scores
from utils import (
AverageMeter,
ProgressMeter,
save_checkpoint,
adjust_learning_rate,
)
################### CODE FOR THE BETA MODEL ########################
def weighted_mean(x, w):
return np.sum(w * x) / np.sum(w)
def fit_beta_weighted(x, w):
x_bar = weighted_mean(x, w)
s2 = weighted_mean((x - x_bar)**2, w)
alpha = x_bar * ((x_bar * (1 - x_bar)) / s2 - 1)
beta = alpha * (1 - x_bar) /x_bar
return alpha, beta
class BetaMixture1D(object):
def __init__(self, max_iters=10,
alphas_init=[1, 2],
betas_init=[2, 1],
weights_init=[0.5, 0.5]):
self.alphas = np.array(alphas_init, dtype=np.float64)
self.betas = np.array(betas_init, dtype=np.float64)
self.weight = np.array(weights_init, dtype=np.float64)
self.max_iters = max_iters
self.lookup = np.zeros(100, dtype=np.float64)
self.lookup_resolution = 100
self.lookup_loss = np.zeros(100, dtype=np.float64)
self.eps_nan = 1e-12
def likelihood(self, x, y):
return stats.beta.pdf(x, self.alphas[y], self.betas[y])
def weighted_likelihood(self, x, y):
return self.weight[y] * self.likelihood(x, y)
def probability(self, x):
return sum(self.weighted_likelihood(x, y) for y in range(2))
def posterior(self, x, y):
return self.weighted_likelihood(x, y) / (self.probability(x) + self.eps_nan)
def responsibilities(self, x):
r = np.array([self.weighted_likelihood(x, i) for i in range(2)])
# there are ~200 samples below that value
r[r <= self.eps_nan] = self.eps_nan
r /= r.sum(axis=0)
return r
def score_samples(self, x):
return -np.log(self.probability(x))
def fit(self, x):
x = np.copy(x)
# EM on beta distributions unsable with x == 0 or 1
eps = 1e-4
x[x >= 1 - eps] = 1 - eps
x[x <= eps] = eps
for i in range(self.max_iters):
# E-step
r = self.responsibilities(x)
# M-step
self.alphas[0], self.betas[0] = fit_beta_weighted(x, r[0])
self.alphas[1], self.betas[1] = fit_beta_weighted(x, r[1])
self.weight = r.sum(axis=1)
self.weight /= self.weight.sum()
return self
def predict(self, x):
return self.posterior(x, 1) > 0.5
def create_lookup(self, y):
x_l = np.linspace(0+self.eps_nan, 1-self.eps_nan, self.lookup_resolution)
lookup_t = self.posterior(x_l, y)
lookup_t[np.argmax(lookup_t):] = lookup_t.max()
self.lookup = lookup_t
self.lookup_loss = x_l # I do not use this one at the end
def look_lookup(self, x):
x_i = x.clone().cpu().numpy()
x_i = np.array((self.lookup_resolution * x_i).astype(int))
x_i[x_i < 0] = 0
x_i[x_i == self.lookup_resolution] = self.lookup_resolution - 1
return self.lookup[x_i]
def __str__(self):
return 'BetaMixture1D(w={}, a={}, b={})'.format(self.weight, self.alphas, self.betas)
def main(opt):
# load Vocabulary Wrapper
print("load and process dataset ...")
vocab = deserialize_vocab(
os.path.join(opt.vocab_path, "%s_vocab.json" % opt.data_name)
)
opt.vocab_size = len(vocab)
# load dataset
captions_train, images_train = get_dataset(
opt.data_path, opt.data_name, "train", vocab
)
captions_dev, images_dev = get_dataset(opt.data_path, opt.data_name, "dev", vocab)
# data loader
noisy_trainloader, data_size, clean_labels = get_loader(
captions_train,
images_train,
"warmup",
opt.batch_size,
opt.workers,
opt.noise_ratio,
opt.noise_file,
)
val_loader = get_loader(
captions_dev, images_dev, "dev", opt.batch_size, opt.workers
)
# create models
model_A = SGRAF(opt)
model_B = SGRAF(opt)
best_rsum = 0
start_epoch = 0
best_test = 0
# save the history of losses from two networks
all_loss = [[], []]
# Warmup
print("\n* Warmup")
if opt.warmup_model_path:
if os.path.isfile(opt.warmup_model_path):
checkpoint = torch.load(opt.warmup_model_path)
model_A.load_state_dict(checkpoint["model_A"])
model_B.load_state_dict(checkpoint["model_B"])
print(
"=> load warmup checkpoint '{}' (epoch {})".format(
opt.warmup_model_path, checkpoint["epoch"]
)
)
print("\nValidattion ...")
validate(opt, val_loader, [model_A, model_B])
else:
raise Exception(
"=> no checkpoint found at '{}'".format(opt.warmup_model_path)
)
else:
epoch = 0
for epoch in range(0, opt.warmup_epoch):
print("[{}/{}] Warmup model_A".format(epoch + 1, opt.warmup_epoch))
warmup(opt, noisy_trainloader, model_A, epoch)
print("[{}/{}] Warmup model_B".format(epoch + 1, opt.warmup_epoch))
warmup(opt, noisy_trainloader, model_B, epoch)
# save the history of losses from two networks
all_loss = [[], []]
print("\n* Co-training")
if opt.saved_model:
checkpoint = torch.load(opt.saved_model)
model_A.load_state_dict(checkpoint["model_A"])
model_B.load_state_dict(checkpoint["model_B"])
start_epoch = checkpoint["epoch"]+1
# Train the Model
row_data = []
row_data_val = []
for epoch in range(start_epoch, opt.num_epochs):
print("\nEpoch [{}/{}]".format(epoch, opt.num_epochs))
adjust_learning_rate(opt, model_A.optimizer, epoch)
adjust_learning_rate(opt, model_B.optimizer, epoch)
# # Dataset split (labeled, unlabeled)
print("Split dataset ...")
prob_A, prob_B,all_loss = eval_train(
opt,
model_A,
model_B,
noisy_trainloader,
data_size,
all_loss
)
pred_A = split_prob(prob_A, opt.p_threshold)
pred_B = split_prob(prob_B, opt.p_threshold)
print("\nModel A training ...")
# train model_A
if len(pred_B.nonzero()[0]):
labeled_trainloader, unlabeled_trainloader = get_loader(
captions_train,
images_train,
"train",
opt.batch_size,
opt.workers,
opt.noise_ratio,
opt.noise_file,
pred=pred_B,
prob=prob_B,
)
train(opt, model_A, model_B, labeled_trainloader, unlabeled_trainloader, epoch)
print("\nModel B training ...")
# train model_B
if len(pred_A.nonzero()[0]):
labeled_trainloader, unlabeled_trainloader = get_loader(
captions_train,
images_train,
"train",
opt.batch_size,
opt.workers,
opt.noise_ratio,
opt.noise_file,
pred=pred_A,
prob=prob_A,
)
train(opt, model_B, model_A, labeled_trainloader, unlabeled_trainloader, epoch)
print("\nValidattion ...")
# evaluate on validation set
rsum,result_list = validate(opt, val_loader, [model_A, model_B])
row_data_val.append(result_list)
logging.info("epoch")
logging.info(epoch)
logging.info("result_list")
logging.info(result_list)
# remember best R@ sum and save checkpoint
is_best = rsum > best_rsum
best_rsum = max(rsum, best_rsum)
save_checkpoint(
{
"epoch": epoch,
"model_A": model_A.state_dict(),
"model_B": model_B.state_dict(),
"best_rsum": best_rsum,
"opt": opt,
},
is_best,
filename="checkpoint_{}.pth.tar".format(epoch),
prefix=opt.output_dir + "/",
)
def train(opt, net, net2, labeled_trainloader, unlabeled_trainloader=None, epoch=None):
"""
One epoch training.
"""
losses = AverageMeter("loss", ":.4e")
batch_time = AverageMeter("batch", ":6.3f")
data_time = AverageMeter("data", ":6.3f")
progress = ProgressMeter(
len(labeled_trainloader),
[batch_time, data_time, losses],
prefix="Training Step",
)
# fix one network and train the other
net.train_start()
net2.val_start()
unlabeled_train_iter = iter(unlabeled_trainloader)
labels_l = []
labels_u = []
end = time.time()
for i, batch_train_data in enumerate(labeled_trainloader):
(
batch_images_l,
batch_text_l,
batch_lengths_l,
_,
batch_labels_l,
batch_prob_l,
batch_clean_labels_l,
) = batch_train_data
batch_size = batch_images_l.size(0)
labels_l.append(batch_clean_labels_l)
# unlabeled data
try:
(
batch_images_u,
batch_text_u,
batch_lengths_u,
_,
batch_clean_labels_u,
) = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
(
batch_images_u,
batch_text_u,
batch_lengths_u,
_,
batch_clean_labels_u,
) = unlabeled_train_iter.next()
labels_u.append(batch_clean_labels_u)
# measure data loading time
data_time.update(time.time() - end)
if torch.cuda.is_available():
batch_prob_l = batch_prob_l.cuda()
batch_labels_l = batch_labels_l.cuda()
# label refinement
# drop last batch if only one sample (batch normalization require)
if batch_images_l.size(0) == 1 or batch_images_u.size(0) == 1:
break
net.train_start()
# train with labeled + unlabeled data exponential or linear
if epoch < (opt.num_epochs // 2):
loss_u = 0
with torch.no_grad():
net2.val_start()
c_y,n_y = net2.predict(batch_images_l, batch_text_l, batch_lengths_l)
else:
with torch.no_grad():
net2.val_start()
c_y,n_y = net2.predict(batch_images_l, batch_text_l, batch_lengths_l,batch_images_u, batch_text_u, batch_lengths_u,epoch=epoch)
loss_u = net.train(
batch_images_u,
batch_text_u,
batch_lengths_u,
labels=n_y,
hard_negative=True,
soft_margin=opt.soft_margin,
mode=opt.noise_train,
)
loss_l = net.train(
batch_images_l,
batch_text_l,
batch_lengths_l,
labels=c_y,
hard_negative=True,
soft_margin=opt.soft_margin,
mode=opt.noise_train,
)
loss = loss_l + loss_u
losses.update(loss, batch_images_l.size(0) + batch_images_u.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# Print log info
if i % opt.log_step == 0:
progress.display(i)
def warmup(opt, train_loader, model, epoch):
# average meters to record the training statistics
losses = AverageMeter("loss", ":.4e")
batch_time = AverageMeter("batch", ":6.3f")
data_time = AverageMeter("data", ":6.3f")
progress = ProgressMeter(
len(train_loader), [batch_time, data_time, losses], prefix="Warmup Step"
)
end = time.time()
for i, (images, captions, lengths, _) in enumerate(train_loader):
data_time.update(time.time() - end)
# drop last batch if only one sample (batch normalization require)
if images.size(0) == 1:
break
model.train_start()
# Update the model
loss = model.train(images, captions, lengths, mode=opt.warmup_type)
losses.update(loss, images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % opt.log_step == 0:
progress.display(i)
def validate(opt, val_loader, models=[]):
# compute the encoding for all the validation images and captions
if opt.data_name == "cc152k_precomp":
per_captions = 1
elif opt.data_name in ["coco_precomp", "f30k_precomp"]:
per_captions = 5
Eiters = models[0].Eiters
sims_mean = 0
count = 0
for ind in range(len(models)):
count += 1
print("Encoding with model {}".format(ind))
img_embs, cap_embs, cap_lens = encode_data(
models[ind], val_loader, opt.log_step
)
# clear duplicate 5*images and keep 1*images FIXME
img_embs = np.array(
[img_embs[i] for i in range(0, len(img_embs), per_captions)]
)
# record computation time of validation
start = time.time()
print("Computing similarity from model {}".format(ind))
sims_mean += shard_attn_scores(
models[ind], img_embs, cap_embs, cap_lens, opt, shard_size=100
)
end = time.time()
print(
"Calculate similarity time with model {}: {:.2f} s".format(ind, end - start)
)
# average the sims
sims_mean = sims_mean / count
# caption retrieval
(r1, r5, r10, medr, meanr) = i2t(img_embs.shape[0], sims_mean, per_captions)
print(
"Image to text: {:.1f}, {:.1f}, {:.1f}, {:.1f}, {:.1f}".format(
r1, r5, r10, medr, meanr
)
)
result_list = [(r1+r5+r10)/3,r1, r5, r10]
# image retrieval
(r1i, r5i, r10i, medri, meanr) = t2i(img_embs.shape[0], sims_mean, per_captions)
print(
"Text to image: {:.1f}, {:.1f}, {:.1f}, {:.1f}, {:.1f}".format(
r1i, r5i, r10i, medri, meanr
)
)
# sum of recalls to be used for early stopping
r_sum = r1 + r5 + r10 + r1i + r5i + r10i
result_list+=[(r1i+r5i+r10i)/3,r1i, r5i, r10i]
return r_sum,result_list
def eval_train(
opt, model_A, model_B, data_loader, data_size, all_loss
):
"""
Compute per-sample loss and prob
"""
batch_time = AverageMeter("batch", ":6.3f")
data_time = AverageMeter("data", ":6.3f")
progress = ProgressMeter(
len(data_loader), [batch_time, data_time], prefix="Computinng losses"
)
model_A.val_start()
model_B.val_start()
losses_A = torch.zeros(data_size)
losses_B = torch.zeros(data_size)
end = time.time()
for i, (images, captions, lengths, ids) in enumerate(data_loader):
# measure data loading time
data_time.update(time.time() - end)
with torch.no_grad():
# compute the loss
loss_A = model_A.train(images, captions, lengths, mode="eval_loss")
loss_B = model_B.train(images, captions, lengths, mode="eval_loss")
for b in range(images.size(0)):
losses_A[ids[b]] = loss_A[b]
losses_B[ids[b]] = loss_B[b]
batch_time.update(time.time() - end)
end = time.time()
if i % opt.log_step == 0:
progress.display(i)
losses_A = (losses_A - losses_A.min()) / (losses_A.max() - losses_A.min())
all_loss[0].append(losses_A)
losses_B = (losses_B - losses_B.min()) / (losses_B.max() - losses_B.min())
all_loss[1].append(losses_B)
input_loss_A = losses_A.reshape(-1, 1)
input_loss_B = losses_B.reshape(-1, 1)
print("\nFitting GMM ...")
# fit a two-component GMM to the loss
if opt.fit_type == 'gmm':
gmm_A = GaussianMixture(n_components=2, max_iter=10, tol=1e-2, reg_covar=5e-4)
gmm_A.fit(input_loss_A.cpu().numpy())
prob_A = gmm_A.predict_proba(input_loss_A.cpu().numpy())
prob_A = prob_A[:, gmm_A.means_.argmin()]
gmm_B = GaussianMixture(n_components=2, max_iter=10, tol=1e-2, reg_covar=5e-4)
gmm_B.fit(input_loss_B.cpu().numpy())
prob_B = gmm_B.predict_proba(input_loss_B.cpu().numpy())
prob_B = prob_B[:, gmm_B.means_.argmin()]
else:
bmm_A = BetaMixture1D(max_iters=10)
bmm_A.fit(input_loss_A.cpu().numpy())
prob_A = bmm_A.posterior(input_loss_A.cpu().numpy(),0)
bmm_B = BetaMixture1D(max_iters=10)
bmm_B.fit(input_loss_B.cpu().numpy())
prob_B = bmm_B.posterior(input_loss_B.cpu().numpy(),0)
return prob_A, prob_B, all_loss
def split_prob(prob, threshld):
if prob.min() > threshld:
# If prob are all larger than threshld, i.e. no noisy data, we enforce 1/100 unlabeled data
print(
"No estimated noisy data. Enforce the 1/100 data with small probability to be unlabeled."
)
threshld = np.sort(prob)[len(prob) // 100]
pred = prob > threshld
return pred
def EuclideanDistances(a,b):
sq_a = a**2
sum_sq_a = torch.sum(sq_a,dim=1).unsqueeze(1) # m->[m, 1]
sq_b = b**2
sum_sq_b = torch.sum(sq_b,dim=1).unsqueeze(0) # n->[1, n]
bt = b.t()
return torch.sqrt(sum_sq_a+sum_sq_b-2*a.mm(bt))
def split_prob(prob, threshld):
if prob.min() > threshld:
# If prob are all larger than threshld, i.e. no noisy data, we enforce 1/100 unlabeled data
print(
"No estimated noisy data. Enforce the 1/100 data with small probability to be unlabeled."
)
threshld = np.sort(prob)[len(prob) // 100]
pred = prob > threshld
return pred