-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
209 lines (185 loc) · 6.59 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import sys
import time
import random
import logging
import argparse
import numpy as np
import torch
from utils import save_config, load_config
from evaluation import evalrank
from co_train import main
def run():
# current_time
current_time = time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())+str(random.randint(0, 100))
# Hyper Parameters
parser = argparse.ArgumentParser(fromfile_prefix_chars="@")
parser.add_argument(
"--data_path", default="", help="path to datasets"
)
parser.add_argument(
"--data_name", default="f30k_precomp", help="{coco,f30k,cc152k}_precomp"
)
parser.add_argument(
"--vocab_path",
default="",
help="Path to saved vocabulary json files.",
)
# ----------------------- training setting ----------------------#
parser.add_argument(
"--batch_size", default=128, type=int, help="Size of a training mini-batch."
)
parser.add_argument(
"--num_epochs", default=40, type=int, help="Number of training epochs."
)
parser.add_argument(
"--lr_update",
default=30,
type=int,
help="Number of epochs to update the learning rate.",
)
parser.add_argument(
"--learning_rate", default=0.0002, type=float, help="Initial learning rate."
)
parser.add_argument(
"--workers", default=0, type=int, help="Number of data loader workers."
)
parser.add_argument(
"--log_step",
default=1000,
type=int,
help="Number of steps to print and record the log.",
)
parser.add_argument(
"--grad_clip", default=2.0, type=float, help="Gradient clipping threshold."
)
parser.add_argument("--margin", default=0.2, type=float, help="Rank loss margin.")
# ------------------------- model setting -----------------------#
parser.add_argument(
"--img_dim",
default=2048,
type=int,
help="Dimensionality of the image embedding.",
)
parser.add_argument(
"--word_dim",
default=300,
type=int,
help="Dimensionality of the word embedding.",
)
parser.add_argument(
"--embed_size",
default=1024,
type=int,
help="Dimensionality of the joint embedding.",
)
parser.add_argument(
"--sim_dim", default=256, type=int, help="Dimensionality of the sim embedding."
)
parser.add_argument(
"--num_layers", default=1, type=int, help="Number of GRU layers."
)
parser.add_argument("--bi_gru", action="store_false", help="Use bidirectional GRU.")
parser.add_argument(
"--no_imgnorm",
action="store_true",
help="Do not normalize the image embeddings.",
)
parser.add_argument(
"--no_txtnorm",
action="store_true",
help="Do not normalize the text embeddings.",
)
parser.add_argument("--module_name", default="SGR", type=str, help="SGR, SAF")
parser.add_argument("--sgr_step", default=3, type=int, help="Step of the SGR.")
# noise settings
parser.add_argument("--noise_file", default="", help="noise_file")
parser.add_argument("--noise_ratio", default="", type=float, help="Noisy ratio")
# NCR Settings
parser.add_argument(
"--no_co_training", action="store_true", help="No co-training for noisy label."
)
parser.add_argument("--warmup_epoch", default=10, type=int, help="warm up epochs")
parser.add_argument("--warmup_model_path", default="", help="warm up models")
parser.add_argument(
"--p_threshold", default=0.5, type=float, help="clean probability threshold"
)
parser.add_argument(
"--soft_margin", default="exponential", help="linear|exponential|sin"
)
parser.add_argument(
"--noise_train", default="train", help="noise selection train|noise_soft|noise_hard"
)
parser.add_argument(
"--noise_tem", default=0.9, type=float, help="noise_soft temperature"
)
parser.add_argument(
"--warmup_type", default='warmup_sele', help="noise_soft temperature"
)
parser.add_argument(
"--fit_type", default='gmm', help="gmm bmm"
)
parser.add_argument(
"--warmup_rate", default=0.5, type=float, help="warmup ratio"
)
# Runing Settings
parser.add_argument("--gpu", default="0", help="Which gpu to use.")
parser.add_argument(
"--seed", default=random.randint(0, 100), type=int, help="Random seed."
)
parser.add_argument(
"--output_dir", default=os.path.join("output", current_time), help="Output dir."
)
parser.add_argument(
"--saved_model", default='', help="Output dir."
)
parser.add_argument(
"--id", default=0, help="run id"
)
# load arguments
opt = parser.parse_args()
opt.output_dir = os.path.join(opt.output_dir+'/', opt.id)
#logging.path=opt.output_dir
#opt.saved_model =''
# Output dir
if not os.path.isdir(opt.output_dir):
os.makedirs(opt.output_dir)
logging.basicConfig(filename=opt.output_dir+'/'+'result.log',level=logging.DEBUG)
if not opt.noise_file:
opt.noise_file = os.path.join(
opt.output_dir, opt.data_name + "_" + str(opt.noise_ratio) + ".npy"
)
if opt.data_name == "cc152k_precomp":
opt.noise_ratio = 0
opt.noise_file = ""
print("\n*-------- Experiment Config --------*")
print(opt)
# CUDA env
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
# set random seed
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.random.manual_seed(opt.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.benchmark = True
# save config
save_config(opt, os.path.join(opt.output_dir, "config.json"))
# traing and evaluation
print("\n*-------- Training --------*")
main(opt)
print("\n*-------- Testing --------*")
if opt.data_name == "coco_precomp":
print("5 fold validation")
evalrank(
os.path.join(opt.output_dir, "checkpoint_test_best.pth.tar"),
split="testall",
fold5=True,
)
print("full validation")
evalrank(os.path.join(opt.output_dir, "checkpoint_test_best.pth.tar"), split="testall")
else:
evalrank(os.path.join(opt.output_dir, "checkpoint_test_best.pth.tar"), split="test")
if __name__ == "__main__":
run()