-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_multi_passage_bert.py
1529 lines (1261 loc) · 54.6 KB
/
run_multi_passage_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on DuReader."""
from __future__ import absolute_import, division, print_function
import collections
import json
import math
import os
import pdb
import pickle
import random
import horovod.tensorflow as hvd
import numpy
import six
import tensorflow as tf
from tqdm import tqdm
import modeling
import optimization
import tokenization
# 这里为了避免打印重复的日志信息
tf.get_logger().propagate = False
flags = tf.flags
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"data_dir", None,
"The output directory where the data will be loaded and written.")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
flags.DEFINE_string(
"predict_dir", None,
"The output directory where the predictions will be written.")
## Other parameters
flags.DEFINE_string("train_file", None,
"SQuAD json for training. E.g., train-v1.1.json")
flags.DEFINE_string(
"predict_file", None,
"SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
flags.DEFINE_string(
"eval_file", None,
"SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_bool(
"do_lower_case", False,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 384,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_integer(
"doc_stride", 128,
"When splitting up a long document into chunks, how much stride to "
"take between chunks.")
flags.DEFINE_integer(
"max_query_length", 64,
"The maximum number of tokens for the question. Questions longer than "
"this will be truncated to this length.")
flags.DEFINE_bool("do_train", False, "Whether to run training.")
flags.DEFINE_bool("do_predict", False, "Whether to run eval on the dev set.")
flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.")
flags.DEFINE_integer("num_accumulation_steps", 1, "how many steps to do gradients accumulation")
flags.DEFINE_bool("horovod", False, "Whether to use horovod for distribute training.")
flags.DEFINE_bool("amp", False, "Whether to use auto mix-precision for training.")
flags.DEFINE_bool("xla", False, "Whether to use xla for training.")
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_integer("predict_batch_size", 8,
"Total batch size for predictions.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 3.0,
"Total number of training epochs to perform.")
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_integer(
"n_best_size", 20,
"The total number of n-best predictions to generate in the "
"nbest_predictions.json output file.")
flags.DEFINE_integer(
"max_answer_length", 30,
"The maximum length of an answer that can be generated. This is needed "
"because the start and end predictions are not conditioned on one another.")
flags.DEFINE_bool(
"verbose_logging", False,
"If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation.")
flags.DEFINE_integer("rand_seed", 12345, "set random seed")
# set random seed (i don't know whether it works or not)
numpy.random.seed(int(FLAGS.rand_seed))
tf.set_random_seed(int(FLAGS.rand_seed))
#
class SquadExample(object):
"""A single training/test example for simple sequence classification.
For examples without an answer, the start and end position are -1.
"""
def __init__(self,
qas_id,
question_text,
doc_tokens,
orig_answer_text=None,
start_position=None,
end_position=None,
ans_doc=None,
fake_docs=[]):
self.qas_id = qas_id
self.question_text = question_text
self.doc_tokens = doc_tokens
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
self.ans_doc = ans_doc
self.fake_docs = fake_docs
def __str__(self):
return self.__repr__()
def __repr__(self):
s = ""
s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
s += ", question_text: %s" % (
tokenization.printable_text(self.question_text))
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens[0]))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.start_position:
s += ", end_position: %d" % (self.end_position)
if self.ans_doc:
s += ', ans_doc: %d' % (self.ans_doc)
return s
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
unique_id,
example_index,
doc_span_index,
tokens,
token_to_orig_map,
token_is_max_context,
input_ids,
input_mask,
segment_ids,
input_span_mask,
start_position=None,
end_position=None,
ans_doc=0):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.input_span_mask = input_span_mask
self.start_position = start_position
self.end_position = end_position
self.ans_doc = ans_doc
#
def customize_tokenizer(text, do_lower_case=False):
tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)
temp_x = ""
text = tokenization.convert_to_unicode(text)
for c in text:
if tokenizer._is_chinese_char(ord(c)) or tokenization._is_punctuation(c) or tokenization._is_whitespace(c) or tokenization._is_control(c):
temp_x += " " + c + " "
else:
temp_x += c
if do_lower_case:
temp_x = temp_x.lower()
return temp_x.split()
#
class ChineseFullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=False):
self.vocab = tokenization.load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.wordpiece_tokenizer = tokenization.WordpieceTokenizer(vocab=self.vocab)
self.do_lower_case = do_lower_case
def tokenize(self, text):
split_tokens = []
for token in customize_tokenizer(text, do_lower_case=self.do_lower_case):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return tokenization.convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return tokenization.convert_by_vocab(self.inv_vocab, ids)
#
def read_squad_examples(input_file, is_training):
"""Read a SQuAD json file into a list of SquadExample."""
tf.logging.info('read squad data')
with tf.gfile.Open(input_file, "r") as reader:
input_data = json.load(reader)["data"]
tf.logging.info('preprocess examples')
examples = []
failed_cnt = 0
for entry_idx,entry in enumerate(input_data):
if (entry_idx + 1) % 5000 == 0:
tf.logging.info(f'Processes {entry_idx + 1} data')
for paragraph in entry["paragraphs"]:
current_doc_tokens = []
current_char_to_word_offset = []
current_paragraph_text = []
failed = False
for paragraph_text in paragraph['context']:
raw_doc_tokens = customize_tokenizer(paragraph_text, do_lower_case=FLAGS.do_lower_case)
doc_tokens = []
char_to_word_offset = []
prev_is_whitespace = True
k = 0
temp_word = ""
for c in paragraph_text:
if tokenization._is_whitespace(c):
char_to_word_offset.append(k-1)
continue
else:
temp_word += c
char_to_word_offset.append(k)
if FLAGS.do_lower_case:
temp_word = temp_word.lower()
if temp_word == raw_doc_tokens[k]:
doc_tokens.append(temp_word)
temp_word = ""
k += 1
try:
assert k==len(raw_doc_tokens)
except:
tf.logging.warning('Error with {}'.format(paragraph['id']))
failed = True
break
current_paragraph_text.append(paragraph_text)
current_doc_tokens.append(raw_doc_tokens)
current_char_to_word_offset.append(char_to_word_offset)
if failed:
failed_cnt += 1
continue
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
ans_doc = qa['ans_doc']
# Only valid in predict
fake_docs = qa.get('fake_docs',[])
start_position = None
end_position = None
orig_answer_text = None
if is_training:
paragraph_text = current_paragraph_text[ans_doc]
char_to_word_offset = current_char_to_word_offset[ans_doc]
doc_tokens = current_doc_tokens[ans_doc]
answer = qa["answers"][0]
orig_answer_text = answer["text"]
if orig_answer_text not in paragraph_text:
tf.logging.warning("Could not find answer")
else:
answer_offset = paragraph_text.index(orig_answer_text)
answer_length = len(orig_answer_text)
start_position = char_to_word_offset[answer_offset]
end_position = char_to_word_offset[answer_offset + answer_length - 1]
# Only add answers where the text can be exactly recovered from the
# document. If this CAN'T happen it's likely due to weird Unicode
# stuff so we will just skip the example.
#
# Note that this means for training mode, every example is NOT
# guaranteed to be preserved.
actual_text = "".join(
doc_tokens[start_position:(end_position + 1)])
cleaned_answer_text = "".join(
tokenization.whitespace_tokenize(orig_answer_text))
if FLAGS.do_lower_case:
cleaned_answer_text = cleaned_answer_text.lower()
if actual_text.find(cleaned_answer_text) == -1:
# you should never reach here !!!
pdb.set_trace()
tf.logging.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text)
continue
example = SquadExample(
qas_id=qas_id,
question_text=question_text,
doc_tokens=current_doc_tokens,
orig_answer_text=orig_answer_text,
start_position=start_position,
end_position=end_position,
ans_doc=ans_doc,
fake_docs=fake_docs)
examples.append(example)
tf.logging.info("**********read_squad_examples complete!**********")
tf.logging.info(f'failed examples size {failed_cnt}')
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length,
doc_stride, max_query_length, is_training,
output_fn):
"""Loads a data file into a list of `InputBatch`s."""
unique_id = 1000000000
tf.logging.info(f'start to convert {len(examples)} examples to features')
for (example_index, example) in enumerate(examples):
if (example_index + 1) % 5000 == 0:
tf.logging.info(f'converted {example_index + 1} examples to features')
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > max_query_length:
query_tokens = query_tokens[0:max_query_length]
def create_features(doc_tokens, is_training=True):
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
tok_start_position = None
tok_end_position = None
if is_training:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(doc_tokens) - 1:
tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
else:
tok_end_position = len(all_doc_tokens) - 1
(tok_start_position, tok_end_position) = _improve_answer_span(
all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
example.orig_answer_text)
# The -3 accounts for [CLS], [SEP] and [SEP]
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
# We can have documents that are longer than the maximum sequence length.
# To deal with this we do a sliding window approach, where we take chunks
# of the up to our max length with a stride of `doc_stride`.
_DocSpan = collections.namedtuple( # pylint: disable=invalid-name
"DocSpan", ["start", "length"])
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_span = _DocSpan(start=start_offset, length=length)
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if is_training:
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, doc_stride)
else:
# 训练时我们不想处理复杂的doc_span问题,只取包含正确答案的span就好了
# 预测时候为了方便我们也就只取第一个span
doc_spans.append(doc_span)
break
if not doc_spans:
return None
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
segment_ids = []
input_span_mask = []
tokens.append("[CLS]")
segment_ids.append(0)
input_span_mask.append(1)
for token in query_tokens:
tokens.append(token)
segment_ids.append(0)
input_span_mask.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
input_span_mask.append(0)
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]
is_max_context = _check_is_max_context(doc_spans, doc_span_index,
split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
segment_ids.append(1)
input_span_mask.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_span_mask.append(0)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
input_span_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(input_span_mask) == max_seq_length
start_position = None
end_position = None
if is_training:
# For training, if our document chunk does not contain an annotation
# we throw it out, since there is nothing to predict.
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
tf.logging.warning('out_of_span %s' %(example_index))
return None
start_position = 0
end_position = 0
else:
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
if example_index < 1:
tf.logging.info("*** Example ***")
tf.logging.info("unique_id: %s" % (unique_id))
tf.logging.info("example_index: %s" % (example_index))
tf.logging.info("doc_span_index: %s" % (doc_span_index))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("token_to_orig_map: %s" % " ".join(
["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)]))
tf.logging.info("token_is_max_context: %s" % " ".join([
"%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context)
]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info(
"input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info(
"input_span_mask: %s" % " ".join([str(x) for x in input_span_mask]))
if is_training:
answer_text = " ".join(tokens[start_position:(end_position + 1)])
tf.logging.info("start_position: %d" % (start_position))
tf.logging.info("end_position: %d" % (end_position))
tf.logging.info(
"answer: %s" % (tokenization.printable_text(answer_text)))
feature = InputFeatures(
unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=tokens,
token_to_orig_map=token_to_orig_map,
token_is_max_context=token_is_max_context,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
input_span_mask=input_span_mask,
start_position=start_position,
end_position=end_position)
return feature
all_features = []
success = True
for i,doc_tokens in enumerate(example.doc_tokens):
if i == example.ans_doc:
features = create_features(doc_tokens,is_training)
else:
features = create_features(doc_tokens, False)
if is_training and features is None:
success = False
break
all_features.append(features)
if not success:
continue
final_features = InputFeatures(
unique_id=unique_id,
example_index=example_index,
doc_span_index=0, # 我们只用一个doc_span
tokens=[],
token_to_orig_map=[],
token_is_max_context=[],
input_ids=[],
input_mask=[],
segment_ids=[],
input_span_mask=[],
start_position=None,
end_position=None)
start = 0
end = 0
for i,features in enumerate(all_features):
if is_training:
if i == example.ans_doc:
final_features.start_position = start + features.start_position
final_features.end_position = end + features.end_position
final_features.ans_doc = i
else:
start += len(features.input_ids)
end += len(features.input_ids)
final_features.tokens.append(features.tokens)
final_features.token_to_orig_map.append(features.token_to_orig_map)
final_features.token_is_max_context.append(features.token_is_max_context)
final_features.input_ids.extend(features.input_ids)
final_features.input_mask.extend(features.input_mask)
final_features.segment_ids.extend(features.segment_ids)
final_features.input_span_mask.extend(features.input_span_mask)
if is_training:
try:
assert final_features.input_span_mask[final_features.start_position] == 1
assert final_features.input_span_mask[final_features.end_position] == 1
except:
# you must not reach here !!!
pdb.set_trace()
# Run callback
output_fn(final_features)
unique_id += 1
def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
orig_answer_text):
"""Returns tokenized answer spans that better match the annotated answer."""
# The SQuAD annotations are character based. We first project them to
# whitespace-tokenized words. But then after WordPiece tokenization, we can
# often find a "better match". For example:
#
# Question: What year was John Smith born?
# Context: The leader was John Smith (1895-1943).
# Answer: 1895
#
# The original whitespace-tokenized answer will be "(1895-1943).". However
# after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
# the exact answer, 1895.
#
# However, this is not always possible. Consider the following:
#
# Question: What country is the top exporter of electornics?
# Context: The Japanese electronics industry is the lagest in the world.
# Answer: Japan
#
# In this case, the annotator chose "Japan" as a character sub-span of
# the word "Japanese". Since our WordPiece tokenizer does not split
# "Japanese", we just use "Japanese" as the annotation. This is fairly rare
# in SQuAD, but does happen.
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
if text_span == tok_answer_text:
return (new_start, new_end)
return (input_start, input_end)
def _check_is_max_context(doc_spans, cur_span_index, position):
"""Check if this is the 'max context' doc span for the token."""
# Because of the sliding window approach taken to scoring documents, a single
# token can appear in multiple documents. E.g.
# Doc: the man went to the store and bought a gallon of milk
# Span A: the man went to the
# Span B: to the store and bought
# Span C: and bought a gallon of
# ...
#
# Now the word 'bought' will have two scores from spans B and C. We only
# want to consider the score with "maximum context", which we define as
# the *minimum* of its left and right context (the *sum* of left and
# right context will always be the same, of course).
#
# In the example the maximum context for 'bought' would be span C since
# it has 1 left context and 3 right context, while span B has 4 left context
# and 0 right context.
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
#
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, input_span_mask,
use_one_hot_embeddings=False):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
final_hidden = model.get_sequence_output()
final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
batch_size = final_hidden_shape[0]
seq_length = final_hidden_shape[1]
hidden_size = final_hidden_shape[2]
output_weights = tf.get_variable(
"cls/squad/output_weights", [2, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"cls/squad/output_bias", [2], initializer=tf.zeros_initializer())
final_hidden_matrix = tf.reshape(final_hidden,
[batch_size * seq_length, hidden_size])
logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [batch_size, seq_length, 2])
logits = tf.transpose(logits, [2, 0, 1])
unstacked_logits = tf.unstack(logits, axis=0)
(start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])
# apply output mask
adder = (1.0 - tf.cast(input_span_mask, tf.float32)) * -100000.0
start_logits += adder
end_logits += adder
output_layer = model.get_pooled_output()
if is_training:
# I.e., 0.1 dropout
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
logits = tf.layers.dense(output_layer,1,kernel_initializer=tf.truncated_normal_initializer(stddev=0.02),name='transform')
return (start_logits, end_logits, logits)
#
def model_fn_builder(bert_config, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, hvd=None, amp=False, num_docs=5):
"""Returns `model_fn` closure for TPUEstimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for TPUEstimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
# Batch * num_sample * size
def reshape_features(feature, batch_size):
return tf.reshape(feature,[batch_size*num_docs,-1])
unique_ids = features["unique_ids"]
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
input_span_mask = features["input_span_mask"]
batch_size = tf.shape(input_ids)[0]
input_ids = reshape_features(input_ids,batch_size)
input_mask = reshape_features(input_mask,batch_size)
segment_ids = reshape_features(segment_ids,batch_size)
input_span_mask = reshape_features(input_span_mask,batch_size)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(start_logits, end_logits, logits) = create_model(
bert_config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
input_span_mask=input_span_mask)
start_logits = tf.reshape(start_logits,[batch_size,-1])
end_logits = tf.reshape(end_logits,[batch_size,-1])
logits = tf.reshape(logits,[batch_size,num_docs])
tvars = tf.trainable_variables()
initialized_variable_names = {}
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
seq_length = modeling.get_shape_list(input_ids)[1]
def compute_loss(logits, positions):
on_hot_pos = tf.one_hot(positions, depth=seq_length*num_docs, dtype=tf.float32)
log_probs = tf.nn.log_softmax(logits, axis=-1)
loss = -tf.reduce_mean(tf.reduce_sum(on_hot_pos * log_probs, axis=-1))
return loss
start_positions = features["start_positions"]
end_positions = features["end_positions"]
start_loss = compute_loss(start_logits, start_positions)
end_loss = compute_loss(end_logits, end_positions)
mrc_loss = (start_loss + end_loss)
probabilities = tf.nn.softmax(logits, axis=-1)
log_probs = tf.nn.log_softmax(logits, axis=-1)
labels = features['ans_doc']
one_hot_labels = tf.one_hot(labels, depth=num_docs, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
rank_loss = tf.reduce_mean(per_example_loss)
total_loss = rank_loss + mrc_loss
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, hvd, amp, FLAGS.num_accumulation_steps)
# Some metrics to monitor
accuracy = tf.metrics.accuracy(labels,tf.arg_max(log_probs,dimension=-1))
start_accuracy = tf.metrics.accuracy(start_positions,tf.arg_max(start_logits,dimension=-1))
end_accuracy = tf.metrics.accuracy(end_positions,tf.arg_max(end_logits,dimension=-1))
tensor_to_log = {
'mrc_loss': mrc_loss,
"rank_loss":rank_loss,
'rank_acc':accuracy[1],
"start_acc":start_accuracy[1],
"end_acc":end_accuracy[1]
}
tf.summary.scalar('mrc_loss',mrc_loss)
tf.summary.scalar('rank_loss',rank_loss)
# 我们在前面已经做了update的操作,这边只需要拿到结果即可
tf.summary.scalar('rank_acc',accuracy[0])
tf.summary.scalar('start_acc',start_accuracy[0])
tf.summary.scalar('end_acc',end_accuracy[0])
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
training_hooks=[tf.train.LoggingTensorHook(tensor_to_log, every_n_iter=50)])
elif mode == tf.estimator.ModeKeys.PREDICT:
start_logits = tf.reshape(start_logits,[batch_size,num_docs,-1])
end_logits = tf.reshape(end_logits,[batch_size,num_docs,-1])
start_logits = tf.nn.log_softmax(start_logits, axis=-1)
end_logits = tf.nn.log_softmax(end_logits, axis=-1)
predictions = {
"unique_ids": unique_ids,
"start_logits": start_logits,
"end_logits": end_logits,
"doc_logits": logits
}
output_spec = tf.estimator.EstimatorSpec(
mode=mode, predictions=predictions)
else:
raise ValueError("Only TRAIN and PREDICT modes are supported: %s" % (mode))
return output_spec
return model_fn
def input_fn_builder(input_file, batch_size,seq_length, is_training, drop_remainder, hvd=None,num_docs=5):
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
name_to_features = {
"unique_ids": tf.FixedLenFeature([], tf.int64),
"input_ids": tf.FixedLenFeature([seq_length*num_docs], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length*num_docs], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length*num_docs], tf.int64),
"input_span_mask": tf.FixedLenFeature([seq_length*num_docs], tf.int64),
}
if is_training:
name_to_features["start_positions"] = tf.FixedLenFeature([], tf.int64)
name_to_features["end_positions"] = tf.FixedLenFeature([], tf.int64)
name_to_features['ans_doc'] = tf.FixedLenFeature([], tf.int64)
def _decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
"""The actual input function."""
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
if is_training:
d = tf.data.TFRecordDataset(input_file, num_parallel_reads=4)
if hvd is not None: d = d.shard(hvd.size(), hvd.rank())
d = d.apply(tf.data.experimental.ignore_errors())
d = d.shuffle(buffer_size=100)
d = d.repeat()
else:
d = tf.data.TFRecordDataset(input_file)
d = d.apply(
tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder))
return d
return input_fn
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits", "doc_logits"])
def write_predictions(all_examples, all_features, all_results, n_best_size,
max_answer_length, do_lower_case, output_prediction_file,
output_nbest_file):
"""Write final predictions to the json file and log-odds of null if needed."""
tf.logging.info("Writing predictions to: %s" % (output_prediction_file))
tf.logging.info("Writing nbest to: %s" % (output_nbest_file))
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction",
["feature_index", "doc_index", "doc_prob", "start_index", "end_index", "start_logit", "end_logit"])
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
for (feature_index, feature) in enumerate(features): # multi-trunk
result = unique_id_to_result[feature.unique_id]
fake_docs = example.fake_docs
doc_logits = [logits-1e20 if i in fake_docs else logits for i,logits in enumerate(result.doc_logits)]
doc_probs = _compute_softmax(doc_logits)
doc_log_probs = [math.log(p) for p in doc_probs]
for i,(start_logits,end_logits) in enumerate(zip(result.start_logits, result.end_logits)):
start_indexes = _get_best_indexes(start_logits, n_best_size)
end_indexes = _get_best_indexes(end_logits, n_best_size)
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict