-
Notifications
You must be signed in to change notification settings - Fork 2
/
lm_model.py
296 lines (269 loc) · 11.1 KB
/
lm_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid.layers as layers
import paddle.fluid as fluid
import numpy as np
def dropout(input, test_mode, args):
if args.dropout and (not test_mode):
return layers.dropout(
input,
dropout_prob=args.dropout,
dropout_implementation="upscale_in_train",
seed=args.random_seed,
is_test=False)
else:
return input
def lstmp_encoder(input_seq, gate_size, h_0, c_0, para_name, proj_size, test_mode, args):
# A lstm encoder implementation with projection.
# Linear transformation part for input gate, output gate, forget gate
# and cell activation vectors need be done outside of dynamic_lstm.
# So the output size is 4 times of gate_size.
if args.para_init:
init = fluid.initializer.Constant(args.init1)
init_b = fluid.initializer.Constant(0.0)
else:
init = None
init_b = None
input_seq = dropout(input_seq, test_mode, args)
input_proj = layers.fc(input=input_seq,
param_attr=fluid.ParamAttr(
name=para_name + '_gate_w', initializer=init),
size=gate_size * 4,
act=None,
bias_attr=False)
if args.debug:
layers.Print(input_seq, message='input_seq', summarize=10)
layers.Print(input_proj, message='input_proj', summarize=10)
hidden, cell = layers.dynamic_lstmp(
input=input_proj,
size=gate_size * 4,
proj_size=proj_size,
h_0=h_0,
c_0=c_0,
use_peepholes=False,
proj_clip=args.proj_clip,
cell_clip=args.cell_clip,
proj_activation="identity",
param_attr=fluid.ParamAttr(initializer=init),
bias_attr=fluid.ParamAttr(initializer=init_b))
return hidden, cell, input_proj
def encoder(x,
y,
vocab_size,
emb_size,
init_hidden=None,
init_cell=None,
para_name='',
custom_samples=None,
custom_probabilities=None,
test_mode=False,
args=None):
x_emb = layers.embedding(
input=x,
size=[vocab_size, emb_size],
dtype='float32',
is_sparse=False,
param_attr=fluid.ParamAttr(name='embedding_para'))
rnn_input = x_emb
rnn_outs = []
rnn_outs_ori = []
cells = []
projs = []
for i in range(args.num_layers):
rnn_input = dropout(rnn_input, test_mode, args)
if init_hidden and init_cell:
h0 = layers.squeeze(
layers.slice(
init_hidden, axes=[0], starts=[i], ends=[i + 1]),
axes=[0])
c0 = layers.squeeze(
layers.slice(
init_cell, axes=[0], starts=[i], ends=[i + 1]),
axes=[0])
else:
h0 = c0 = None
rnn_out, cell, input_proj = lstmp_encoder(
rnn_input, args.hidden_size, h0, c0,
para_name + 'layer{}'.format(i + 1), emb_size, test_mode, args)
rnn_out_ori = rnn_out
if i > 0:
rnn_out = rnn_out + rnn_input
rnn_out = dropout(rnn_out, test_mode, args)
cell = dropout(cell, test_mode, args)
rnn_outs.append(rnn_out)
rnn_outs_ori.append(rnn_out_ori)
rnn_input = rnn_out
cells.append(cell)
projs.append(input_proj)
softmax_weight = layers.create_parameter(
[vocab_size, emb_size], dtype="float32", name="softmax_weight")
softmax_bias = layers.create_parameter(
[vocab_size], dtype="float32", name='softmax_bias')
projection = layers.matmul(rnn_outs[-1], softmax_weight, transpose_y=True)
projection = layers.elementwise_add(projection, softmax_bias)
projection = layers.reshape(projection, shape=[-1, vocab_size])
if args.sample_softmax and (not test_mode):
loss = layers.sampled_softmax_with_cross_entropy(
logits=projection,
label=y,
num_samples=args.n_negative_samples_batch,
seed=args.random_seed)
if args.debug:
layers.Print(loss, message='out_loss', summarize=100)
else:
label = layers.one_hot(input=y, depth=vocab_size)
loss = layers.softmax_with_cross_entropy(
logits=projection, label=label, soft_label=True)
return [x_emb, projection, loss], rnn_outs, rnn_outs_ori, cells, projs
class LanguageModel(object):
def __init__(self, args, vocab_size, test_mode):
self.args = args
self.vocab_size = vocab_size
self.test_mode = test_mode
def build(self):
args = self.args
emb_size = args.embed_size
proj_size = args.embed_size
hidden_size = args.hidden_size
batch_size = args.batch_size
num_layers = args.num_layers
num_steps = args.num_steps
lstm_outputs = []
x_f = layers.data(name="x", shape=[1], dtype='int64', lod_level=1)
y_f = layers.data(name="y", shape=[1], dtype='int64', lod_level=1)
x_b = layers.data(name="x_r", shape=[1], dtype='int64', lod_level=1)
y_b = layers.data(name="y_r", shape=[1], dtype='int64', lod_level=1)
init_hiddens_ = layers.data(
name="init_hiddens", shape=[1], dtype='float32')
init_cells_ = layers.data(
name="init_cells", shape=[1], dtype='float32')
if args.debug:
layers.Print(init_cells_, message='init_cells_', summarize=10)
layers.Print(init_hiddens_, message='init_hiddens_', summarize=10)
init_hiddens = layers.reshape(
init_hiddens_, shape=[2 * num_layers, -1, proj_size])
init_cells = layers.reshape(
init_cells_, shape=[2 * num_layers, -1, hidden_size])
init_hidden = layers.slice(
init_hiddens, axes=[0], starts=[0], ends=[num_layers])
init_cell = layers.slice(
init_cells, axes=[0], starts=[0], ends=[num_layers])
init_hidden_r = layers.slice(
init_hiddens, axes=[0], starts=[num_layers],
ends=[2 * num_layers])
init_cell_r = layers.slice(
init_cells, axes=[0], starts=[num_layers], ends=[2 * num_layers])
if args.use_custom_samples:
custom_samples = layers.data(
name="custom_samples",
shape=[args.n_negative_samples_batch + 1],
dtype='int64',
lod_level=1)
custom_samples_r = layers.data(
name="custom_samples_r",
shape=[args.n_negative_samples_batch + 1],
dtype='int64',
lod_level=1)
custom_probabilities = layers.data(
name="custom_probabilities",
shape=[args.n_negative_samples_batch + 1],
dtype='float32',
lod_level=1)
else:
custom_samples = None
custom_samples_r = None
custom_probabilities = None
forward, fw_hiddens, fw_hiddens_ori, fw_cells, fw_projs = encoder(
x_f,
y_f,
self.vocab_size,
emb_size,
init_hidden,
init_cell,
para_name='fw_',
custom_samples=custom_samples,
custom_probabilities=custom_probabilities,
test_mode=self.test_mode,
args=args)
backward, bw_hiddens, bw_hiddens_ori, bw_cells, bw_projs = encoder(
x_b,
y_b,
self.vocab_size,
emb_size,
init_hidden_r,
init_cell_r,
para_name='bw_',
custom_samples=custom_samples_r,
custom_probabilities=custom_probabilities,
test_mode=self.test_mode,
args=args)
losses = layers.concat([forward[-1], backward[-1]])
self.loss = layers.reduce_mean(losses)
self.loss.permissions = True
self.loss.persistable = True
if args.debug:
x_emb, projection, loss = forward
layers.Print(init_cells, message='init_cells', summarize=10)
layers.Print(init_hiddens, message='init_hiddens', summarize=10)
layers.Print(init_cell, message='init_cell', summarize=10)
layers.Print(y_b, message='y_b', summarize=10)
layers.Print(x_emb, message='x_emb', summarize=10)
layers.Print(projection, message='projection', summarize=10)
layers.Print(losses, message='losses', summarize=320)
layers.Print(self.loss, message='loss', summarize=320)
self.grad_vars = [x_f, y_f, x_b, y_b, self.loss]
self.grad_vars_name = ['x', 'y', 'x_r', 'y_r', 'final_loss']
fw_vars_name = ['x_emb', 'proj', 'loss'] + [
'init_hidden', 'init_cell'
] + ['rnn_out', 'rnn_out2', 'cell', 'cell2', 'xproj', 'xproj2']
bw_vars_name = ['x_emb_r', 'proj_r', 'loss_r'] + [
'init_hidden_r', 'init_cell_r'
] + [
'rnn_out_r', 'rnn_out2_r', 'cell_r', 'cell2_r', 'xproj_r',
'xproj2_r'
]
fw_vars = forward + [init_hidden, init_cell
] + fw_hiddens + fw_cells + fw_projs
bw_vars = backward + [init_hidden_r, init_cell_r
] + bw_hiddens + bw_cells + bw_projs
for i in range(len(fw_vars_name)):
self.grad_vars.append(fw_vars[i])
self.grad_vars.append(bw_vars[i])
self.grad_vars_name.append(fw_vars_name[i])
self.grad_vars_name.append(bw_vars_name[i])
if args.use_custom_samples:
self.feed_order = [
'x', 'y', 'x_r', 'y_r', 'custom_samples', 'custom_samples_r',
'custom_probabilities'
]
else:
self.feed_order = ['x', 'y', 'x_r', 'y_r']
self.last_hidden = [
fluid.layers.sequence_last_step(input=x)
for x in fw_hiddens_ori + bw_hiddens_ori
]
self.last_cell = [
fluid.layers.sequence_last_step(input=x)
for x in fw_cells + bw_cells
]
self.last_hidden = layers.concat(self.last_hidden, axis=0)
self.last_hidden.persistable = True
self.last_cell = layers.concat(self.last_cell, axis=0)
self.last_cell.persistable = True
if args.debug:
layers.Print(self.last_cell, message='last_cell', summarize=10)
layers.Print(self.last_hidden, message='last_hidden', summarize=10)