-
Notifications
You must be signed in to change notification settings - Fork 3
/
run.py
executable file
·675 lines (608 loc) · 26.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import time
import os
import random
import json
import six
import multiprocessing
import ipdb
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
import sys
if sys.version[0] == '2':
reload(sys)
sys.setdefaultencoding("utf-8")
sys.path.append('..')
from args import *
import rc_model
from dataset import BRCDataset
import logging
import pickle
from utils import normalize
from utils import compute_bleu_rouge
from vocab import Vocab
def prepare_batch_input(insts, args):
batch_size = len(insts['raw_data'])
inst_num = len(insts['passage_num'])
if batch_size != inst_num:
print("data error %d, %d" % (batch_size, inst_num))
return None
new_insts = []
passage_idx = 0
for i in range(batch_size):
p_len = 0
p_id = []
p_ids = []
q_ids = []
q_id = []
p_id_r = []
p_ids_r = []
q_ids_r = []
q_id_r = []
if args.elmo==True:
p_id_elmo=[]
p_ids_elmo=[]
q_ids_elmo=[]
q_id_elmo=[]
for j in range(insts['passage_num'][i]):
p_ids.append(insts['passage_token_ids'][passage_idx + j])
p_id = p_id + insts['passage_token_ids'][passage_idx + j]
q_ids.append(insts['question_token_ids'][passage_idx + j])
q_id = q_id + insts['question_token_ids'][passage_idx + j]
if args.elmo==True:
p_ids_elmo.append(insts['passage_token_ids_elmo'][passage_idx + j])
p_id_elmo = p_id_elmo + insts['passage_token_ids_elmo'][passage_idx + j]
q_ids_elmo.append(insts['question_token_ids_elmo'][passage_idx + j])
q_id_elmo = q_id_elmo + insts['question_token_ids_elmo'][passage_idx + j]
passage_idx += insts['passage_num'][i]
p_len = len(p_id)
def _get_label(idx, ref_len):
ret = [0.0] * ref_len
if idx >= 0 and idx < ref_len:
ret[idx] = 1.0
return [[x] for x in ret]
start_label = _get_label(insts['start_id'][i], p_len)
end_label = _get_label(insts['end_id'][i], p_len)
if args.elmo==True:
new_inst = [q_ids, start_label, end_label, p_ids, q_id,q_ids_elmo,p_ids_elmo]
else:
new_inst = [q_ids, start_label, end_label, p_ids, q_id]
new_insts.append(new_inst)
return new_insts
def batch_reader(batch_list, args):
res = []
for batch in batch_list:
res.append(prepare_batch_input(batch, args))
return res
def read_multiple(reader, count, clip_last=True):
"""
Stack data from reader for multi-devices.
"""
def __impl__():
res = []
for item in reader():
res.append(item)
if len(res) == count:
yield res
res = []
if len(res) == count:
yield res
elif not clip_last:
data = []
for item in res:
data += item
if len(data) > count:
inst_num_per_part = len(data) // count
yield [
data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
for i in range(count)
]
return __impl__
def LodTensor_Array(lod_tensor):
lod = lod_tensor.lod()
array = np.array(lod_tensor)
new_array = []
for i in range(len(lod[0]) - 1):
new_array.append(array[lod[0][i]:lod[0][i + 1]])
return new_array
def print_para(train_prog, train_exe, logger, args):
if args.para_print:
param_list = train_prog.block(0).all_parameters()
param_name_list = [p.name for p in param_list]
num_sum = 0
for p_name in param_name_list:
p_array = np.array(train_exe.scope.find_var(p_name).get_tensor())
param_num = np.prod(p_array.shape)
num_sum = num_sum + param_num
logger.info(
"param: {0}, mean={1} max={2} min={3} num={4} {5}".format(
p_name,
p_array.mean(),
p_array.max(), p_array.min(), p_array.shape, param_num))
logger.info("total param num: {0}".format(num_sum))
def find_best_answer_for_passage(start_probs, end_probs, passage_len):
"""
Finds the best answer with the maximum start_prob * end_prob from a single passage
"""
if passage_len is None:
passage_len = len(start_probs)
else:
passage_len = min(len(start_probs), passage_len)
best_start, best_end, max_prob = -1, -1, 0
for start_idx in range(passage_len):
for ans_len in range(args.max_a_len):
end_idx = start_idx + ans_len
if end_idx >= passage_len:
continue
prob = start_probs[start_idx] * end_probs[end_idx]
if prob > max_prob:
best_start = start_idx
best_end = end_idx
max_prob = prob
return (best_start, best_end), max_prob
def find_best_answer_for_inst(sample, start_prob, end_prob, inst_lod):
"""
Finds the best answer for a sample given start_prob and end_prob for each position.
This will call find_best_answer_for_passage because there are multiple passages in a sample
"""
best_p_idx, best_span, best_score = None, None, 0
for p_idx, passage in enumerate(sample['passages']):
if p_idx >= args.max_p_num:
continue
if len(start_prob) != len(end_prob):
logger.info('error: {}'.format(sample['question']))
continue
passage_start = inst_lod[p_idx] - inst_lod[0]
passage_end = inst_lod[p_idx + 1] - inst_lod[0]
passage_len = passage_end - passage_start
passage_len = min(args.max_p_len, len(passage['passage_tokens']))
answer_span, score = find_best_answer_for_passage(
start_prob[passage_start:passage_end],
end_prob[passage_start:passage_end], passage_len)
if score > best_score:
best_score = score
best_p_idx = p_idx
best_span = answer_span
if best_p_idx is None or best_span is None:
best_answer = ''
else:
best_answer = ''.join(sample['passages'][best_p_idx]['passage_tokens'][
best_span[0]:best_span[1] + 1])
return best_answer, best_span
def validation(inference_program, avg_cost, s_probs, e_probs, match, feed_order,
place, dev_count, vocab, brc_data, logger, args):
"""
"""
build_strategy = fluid.BuildStrategy()
build_strategy.enable_inplace = False
build_strategy.memory_optimize = False
parallel_executor = fluid.ParallelExecutor(
main_program=inference_program,
use_cuda=bool(args.use_gpu),
loss_name=avg_cost.name,
build_strategy=build_strategy)
print_para(inference_program, parallel_executor, logger, args)
# Use test set as validation each pass
total_loss = 0.0
count = 0
n_batch_cnt = 0
n_batch_loss = 0.0
pred_answers, ref_answers = [], []
val_feed_list = [
inference_program.global_block().var(var_name)
for var_name in feed_order
]
val_feeder = fluid.DataFeeder(val_feed_list, place)
pad_id = vocab.get_id(vocab.pad_token)
dev_reader = lambda:brc_data.gen_mini_batches('dev', args.batch_size, pad_id, shuffle=False)
dev_reader = read_multiple(dev_reader, dev_count)
for batch_id, batch_list in enumerate(dev_reader(), 1):
feed_data = batch_reader(batch_list, args)
val_fetch_outs = parallel_executor.run(
feed=list(val_feeder.feed_parallel(feed_data, dev_count)),
fetch_list=[avg_cost.name, s_probs.name, e_probs.name, match.name],
return_numpy=False)
total_loss += np.array(val_fetch_outs[0]).sum()
start_probs_m = LodTensor_Array(val_fetch_outs[1])
end_probs_m = LodTensor_Array(val_fetch_outs[2])
match_lod = val_fetch_outs[3].lod()
count += len(np.array(val_fetch_outs[0]))
n_batch_cnt += len(np.array(val_fetch_outs[0]))
n_batch_loss += np.array(val_fetch_outs[0]).sum()
log_every_n_batch = args.log_interval
if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
logger.info('Average dev loss from batch {} to {} is {}'.format(
batch_id - log_every_n_batch + 1, batch_id, "%.10f" % (
n_batch_loss / n_batch_cnt)))
n_batch_loss = 0.0
n_batch_cnt = 0
batch_offset = 0
for idx, batch in enumerate(batch_list):
#one batch
batch_size = len(batch['raw_data'])
batch_range = match_lod[0][batch_offset:batch_offset + batch_size +
1]
batch_lod = [[batch_range[x], batch_range[x + 1]]
for x in range(len(batch_range[:-1]))]
start_prob_batch = start_probs_m[batch_offset:batch_offset +
batch_size + 1]
end_prob_batch = end_probs_m[batch_offset:batch_offset + batch_size
+ 1]
for sample, start_prob_inst, end_prob_inst, inst_range in zip(
batch['raw_data'], start_prob_batch, end_prob_batch,
batch_lod):
#one instance
inst_lod = match_lod[1][inst_range[0]:inst_range[1] + 1]
best_answer, best_span = find_best_answer_for_inst(
sample, start_prob_inst, end_prob_inst, inst_lod)
pred = {
'question_id': sample['question_id'],
'question_type': sample['question_type'],
'answers': [best_answer],
'entity_answers': [[]],
'yesno_answers': [best_span]
}
pred_answers.append(pred)
if 'answers' in sample:
ref = {
'question_id': sample['question_id'],
'question_type': sample['question_type'],
'answers': sample['answers'],
'entity_answers': [[]],
'yesno_answers': []
}
ref_answers.append(ref)
batch_offset = batch_offset + batch_size
result_dir = args.result_dir
result_prefix = args.result_name
if result_dir is not None and result_prefix is not None:
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
result_file = os.path.join(result_dir, result_prefix + 'json')
with open(result_file, 'w') as fout:
for pred_answer in pred_answers:
fout.write(json.dumps(pred_answer, ensure_ascii=False) + '\n')
logger.info('Saving {} results to {}'.format(result_prefix,
result_file))
ave_loss = 1.0 * total_loss / count
# compute the bleu and rouge scores if reference answers is provided
if len(ref_answers) > 0:
pred_dict, ref_dict = {}, {}
for pred, ref in zip(pred_answers, ref_answers):
question_id = ref['question_id']
if len(ref['answers']) > 0:
pred_dict[question_id] = normalize(pred['answers'])
ref_dict[question_id] = normalize(ref['answers'])
bleu_rouge = compute_bleu_rouge(pred_dict, ref_dict)
else:
bleu_rouge = None
return ave_loss, bleu_rouge
def l2_loss(train_prog):
param_list = train_prog.block(0).all_parameters()
para_sum = []
for para in param_list:
para_mul = fluid.layers.elementwise_mul(x=para, y=para, axis=0)
para_sum.append(fluid.layers.reduce_sum(input=para_mul, dim=None))
return fluid.layers.sums(para_sum) * 0.5
def if_exist(var):
path = os.path.join(src_pretrain_model_path, var.name)
exist = os.path.exists(path)
if exist:
print('Load model: %s' % path)
return exist
src_pretrain_model_path = '490001'
def train(logger, args):
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
if six.PY2:
vocab = pickle.load(fin)
else:
vocab = pickle.load(fin, encoding='bytes')
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
args.elmo,args.elmo_dir,train_files=args.trainset,dev_files= args.devset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
if not args.use_gpu:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
else:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
# build model
main_program = fluid.Program()
startup_prog = fluid.Program()
fluid.memory_optimize(startup_prog)
if args.enable_ce:
main_program.random_seed = args.random_seed
startup_prog.random_seed = args.random_seed
with fluid.program_guard(main_program, startup_prog):
with fluid.unique_name.guard():
avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
args.hidden_size, vocab, args)
# clone from default main program and use it as the validation program
inference_program = main_program.clone(for_test=True)
# build optimizer
if args.optim == 'sgd':
optimizer = fluid.optimizer.SGD(
learning_rate=args.learning_rate)
elif args.optim == 'adam':
optimizer = fluid.optimizer.Adam(
learning_rate=args.learning_rate)
elif args.optim == 'rprop':
optimizer = fluid.optimizer.RMSPropOptimizer(
learning_rate=args.learning_rate)
else:
logger.error('Unsupported optimizer: {}'.format(args.optim))
exit(-1)
if args.weight_decay > 0.0:
obj_func = avg_cost + args.weight_decay * l2_loss(main_program)
#ipdb.set_trace()
optimizer.minimize(obj_func)
else:
obj_func = avg_cost
optimizer.minimize(obj_func)
#ipdb.set_trace()
# initialize parameters
place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(
exe, args.load_dir, main_program=main_program)
else:
exe.run(startup_prog)
embedding_para = fluid.global_scope().find_var(
'embedding_para_1').get_tensor()
embedding_para.set(vocab.embeddings.astype(np.float32), place)
#load elmo data
if args.elmo==True:
src_pretrain_model_path = '490001'
fluid.io.load_vars(executor=exe, dirname=src_pretrain_model_path, predicate=if_exist, main_program=main_program)
# prepare data
feed_list = [
main_program.global_block().var(var_name)
for var_name in feed_order
]
#ipdb.set_trace()
feeder = fluid.DataFeeder(feed_list, place)
#ipdb.set_trace()
logger.info('Training the model...')
parallel_executor = fluid.ParallelExecutor(
main_program=main_program,
use_cuda=bool(args.use_gpu),
loss_name=avg_cost.name)
print_para(main_program, parallel_executor, logger, args)
for pass_id in range(1, args.pass_num + 1):
pass_start_time = time.time()
pad_id = vocab.get_id(vocab.pad_token)
if args.enable_ce:
train_reader = lambda:brc_data.gen_mini_batches('train', args.batch_size, pad_id, shuffle=False)
else:
train_reader = lambda:brc_data.gen_mini_batches('train', args.batch_size, pad_id, shuffle=True)
train_reader = read_multiple(train_reader, dev_count)
log_every_n_batch, n_batch_loss = args.log_interval, 0
total_num, total_loss = 0, 0
for batch_id, batch_list in enumerate(train_reader(), 1):
feed_data = batch_reader(batch_list, args)
#ipdb.set_trace()
fetch_outs = parallel_executor.run(
feed=list(feeder.feed_parallel(feed_data, dev_count)),
fetch_list=[obj_func.name],
return_numpy=False)
cost_train = np.array(fetch_outs[0]).mean()
total_num += args.batch_size * dev_count
n_batch_loss += cost_train
total_loss += cost_train * args.batch_size * dev_count
if args.enable_ce and batch_id >= 100:
break
if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
print_para(main_program, parallel_executor, logger,
args)
logger.info(
'Average loss from batch {} to {} is {}'.format(
batch_id - log_every_n_batch + 1, batch_id,
"%.10f" % (n_batch_loss / log_every_n_batch)))
n_batch_loss = 0
if args.dev_interval > 0 and batch_id % args.dev_interval == 0:
if brc_data.dev_set is not None:
eval_loss, bleu_rouge = validation(
inference_program, avg_cost, s_probs, e_probs,
match, feed_order, place, dev_count, vocab,
brc_data, logger, args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(
bleu_rouge))
pass_end_time = time.time()
time_consumed = pass_end_time - pass_start_time
logger.info('epoch: {0}, epoch_time_cost: {1:.2f}'.format(
pass_id, time_consumed))
logger.info('Evaluating the model after epoch {}'.format(
pass_id))
if brc_data.dev_set is not None:
eval_loss, bleu_rouge = validation(
inference_program, avg_cost, s_probs, e_probs, match,
feed_order, place, dev_count, vocab, brc_data, logger,
args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(bleu_rouge))
else:
logger.warning(
'No dev set is loaded for evaluation in the dataset!')
logger.info('Average train loss for epoch {} is {}'.format(
pass_id, "%.10f" % (1.0 * total_loss / total_num)))
if pass_id % args.save_interval == 0:
model_path = os.path.join(args.save_dir, str(pass_id))
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_persistables(
executor=exe,
dirname=model_path,
main_program=main_program)
if args.enable_ce: # For CE
print("kpis\ttrain_cost_card%d\t%f" %
(dev_count, total_loss / total_num))
if brc_data.dev_set is not None:
print("kpis\ttest_cost_card%d\t%f" %
(dev_count, eval_loss))
print("kpis\ttrain_duration_card%d\t%f" %
(dev_count, time_consumed))
def evaluate(logger, args):
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(
args.max_p_num, args.max_p_len, args.max_q_len,args.elmo,args.elmo_dir, dev_files=args.devset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
# build model
main_program = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_program, startup_prog):
with fluid.unique_name.guard():
avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
args.hidden_size, vocab, args)
# initialize parameters
if not args.use_gpu:
place = fluid.CPUPlace()
dev_count = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
else:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(
exe, args.load_dir, main_program=main_program)
else:
logger.error('No model file to load ...')
return
inference_program = main_program.clone(for_test=True)
eval_loss, bleu_rouge = validation(
inference_program, avg_cost, s_probs, e_probs, match,
feed_order, place, dev_count, vocab, brc_data, logger, args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(bleu_rouge))
logger.info('Predicted answers are saved to {}'.format(
os.path.join(args.result_dir)))
def predict(logger, args):
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(
args.max_p_num, args.max_p_len, args.max_q_len,args.elmo,args.elmo_dir, dev_files=args.testset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
# build model
main_program = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_program, startup_prog):
with fluid.unique_name.guard():
avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
args.hidden_size, vocab, args)
# initialize parameters
if not args.use_gpu:
place = fluid.CPUPlace()
dev_count = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
else:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(
exe, args.load_dir, main_program=main_program)
else:
logger.error('No model file to load ...')
return
inference_program = main_program.clone(for_test=True)
eval_loss, bleu_rouge = validation(
inference_program, avg_cost, s_probs, e_probs, match,
feed_order, place, dev_count, vocab, brc_data, logger, args)
def prepare(logger, args):
"""
checks data, creates the directories, prepare the vocabulary and embeddings
"""
logger.info('Checking the data files...')
for data_path in args.trainset + args.devset + args.testset:
assert os.path.exists(data_path), '{} file does not exist.'.format(
data_path)
logger.info('Preparing the directories...')
for dir_path in [args.vocab_dir, args.save_dir, args.result_dir]:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
logger.info('Building vocabulary...')
brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,args.elmo,args.elmo_dir,
args.trainset, args.devset, args.testset)
vocab = Vocab(lower=True)
for word in brc_data.word_iter('train'):
vocab.add(word)
unfiltered_vocab_size = vocab.size()
vocab.filter_tokens_by_cnt(min_cnt=2)
filtered_num = unfiltered_vocab_size - vocab.size()
logger.info('After filter {} tokens, the final vocab size is {}'.format(
filtered_num, vocab.size()))
logger.info('Assigning embeddings...')
vocab.randomly_init_embeddings(args.embed_size)
logger.info('Saving vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout:
pickle.dump(vocab, fout)
logger.info('Done with preparing!')
if __name__ == '__main__':
args = parse_args()
if args.enable_ce:
random.seed(args.random_seed)
np.random.seed(args.random_seed)
logger = logging.getLogger("brc")
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
if args.log_path:
file_handler = logging.FileHandler(args.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
args = parse_args()
logger.info('Running with args : {}'.format(args))
if args.prepare:
prepare(logger, args)
if args.train:
train(logger, args)
if args.evaluate:
evaluate(logger, args)
if args.predict:
predict(logger, args)