forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 1
/
LPRnet.cpp
461 lines (383 loc) · 19.9 KB
/
LPRnet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#include <iostream>
#include <chrono>
#include <map>
#include <opencv2/opencv.hpp>
#include "NvInfer.h"
#include "cuda_runtime_api.h"
#include "logging.h"
#include <fstream>
#include <map>
#include <sstream>
#define CHECK(status) \
do\
{\
auto ret = (status);\
if (ret != 0)\
{\
std::cerr << "Cuda failure: " << ret << std::endl;\
abort();\
}\
} while (0)
//#define USE_FP16 // comment out this if want to use FP32
#define DEVICE 0 // GPU id
#define BATCH_SIZE 1
// stuff we know about the network and the input/output blobs
static const int INPUT_H = 24;
static const int INPUT_W = 94;
static const int OUTPUT_SIZE = 18 * 68;
const char *INPUT_BLOB_NAME = "data";
const char *OUTPUT_BLOB_NAME = "prob";
static Logger gLogger;
using namespace nvinfer1;
const std::string alphabet[] = {"京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑",
"苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤",
"桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
"新",
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
"A", "B", "C", "D", "E", "F", "G", "H", "J", "K",
"L", "M", "N", "P", "Q", "R", "S", "T", "U", "V",
"W", "X", "Y", "Z", "I", "O", "-"
};
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file. please check if the .wts file path is right!!!!!!");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--) {
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t *val = reinterpret_cast<uint32_t *>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x) {
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer *addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights> &weightMap, ITensor &input,
std::string lname, float eps) {
float *gamma = (float *) weightMap[lname + ".weight"].values;
float *beta = (float *) weightMap[lname + ".bias"].values;
float *mean = (float *) weightMap[lname + ".running_mean"].values;
float *var = (float *) weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float *>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float *>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float *>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer *scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
IConvolutionLayer *
small_basic_block(INetworkDefinition *network, std::map<std::string, Weights> &weightMap, ITensor &input,
int nbOutputMaps, std::string lname) {
IConvolutionLayer *conv = network->addConvolutionNd(input, nbOutputMaps / 4, DimsHW{1, 1},
weightMap[lname + ".block.0.weight"],
weightMap[lname + ".block.0.bias"]);
auto relu = network->addActivation(*conv->getOutput(0), ActivationType::kRELU);
IConvolutionLayer *conv2 = network->addConvolutionNd(*relu->getOutput(0), nbOutputMaps / 4, DimsHW{3, 1},
weightMap[lname + ".block.2.weight"],
weightMap[lname + ".block.2.bias"]);
conv2->setPaddingNd(DimsHW{1, 0});
auto relu2 = network->addActivation(*conv2->getOutput(0), ActivationType::kRELU);
IConvolutionLayer *conv3 = network->addConvolutionNd(*relu2->getOutput(0), nbOutputMaps / 4, DimsHW{1, 3},
weightMap[lname + ".block.4.weight"],
weightMap[lname + ".block.4.bias"]);
conv3->setPaddingNd(DimsHW{0, 1});
auto relu3 = network->addActivation(*conv3->getOutput(0), ActivationType::kRELU);
IConvolutionLayer *conv4 = network->addConvolutionNd(*relu3->getOutput(0), nbOutputMaps, DimsHW{1, 1},
weightMap[lname + ".block.6.weight"],
weightMap[lname + ".block.6.bias"]);
return conv4;
}
ICudaEngine *createEngine(unsigned int maxBatchSize, IBuilder *builder, IBuilderConfig *config, DataType dt) {
INetworkDefinition *network = builder->createNetworkV2(0U);
// Create input tensor of shape {C, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
ITensor *data = network->addInput(INPUT_BLOB_NAME, dt, Dims4{1, 3, INPUT_H, INPUT_W});
assert(data);
std::map<std::string, Weights> weightMap = loadWeights("../LPRNet.wts");
//LPRnet
IConvolutionLayer *conv = network->addConvolutionNd(*data, 64, DimsHW{3, 3}, weightMap["backbone.0.weight"],weightMap["backbone.0.bias"]);
assert(conv);
ILayer *tmp = addBatchNorm2d(network, weightMap, *conv->getOutput(0), "backbone.1", 1e-5);
auto relu = network->addActivation(*tmp->getOutput(0), ActivationType::kRELU);
//f0
auto f0 = network->addPoolingNd(*relu->getOutput(0), PoolingType::kAVERAGE, DimsHW{5, 5});
f0->setStrideNd(DimsHW{5, 5});
auto p = network->addPoolingNd(*relu->getOutput(0), PoolingType::kMAX, Dims3{1, 3, 3});
p->setStrideNd(Dims3{1, 1, 1});
auto small = small_basic_block(network, weightMap, *p->getOutput(0), 128, "backbone.4");
ILayer *tmp2 = addBatchNorm2d(network, weightMap, *small->getOutput(0), "backbone.5", 1e-5);
auto relu2 = network->addActivation(*tmp2->getOutput(0), ActivationType::kRELU);
auto f1 = network->addPoolingNd(*relu2->getOutput(0), PoolingType::kAVERAGE, DimsHW{5, 5});
f1->setStrideNd(DimsHW{5, 5});
auto p2 = network->addPoolingNd(*relu2->getOutput(0), PoolingType::kMAX, Dims3{1, 3, 3});
p2->setStrideNd(Dims3{2, 1, 2});
auto small2 = small_basic_block(network, weightMap, *p2->getOutput(0), 256, "backbone.8");
ILayer *tmp3 = addBatchNorm2d(network, weightMap, *small2->getOutput(0), "backbone.9", 1e-5);
auto relu3 = network->addActivation(*tmp3->getOutput(0), ActivationType::kRELU);
auto small3 = small_basic_block(network, weightMap, *relu3->getOutput(0), 256, "backbone.11");
ILayer *tmp4 = addBatchNorm2d(network, weightMap, *small3->getOutput(0), "backbone.12", 1e-5);
auto relu4 = network->addActivation(*tmp4->getOutput(0), ActivationType::kRELU);
auto f2 = network->addPoolingNd(*relu4->getOutput(0), PoolingType::kAVERAGE, DimsHW{4, 10});
f2->setStrideNd(DimsHW{4, 2});
auto p3 = network->addPoolingNd(*relu4->getOutput(0), PoolingType::kMAX, Dims3{1, 3, 3});
p3->setStrideNd(Dims3{4, 1, 2});
Dims pf3 = p3->getOutput(0)->getDimensions();
IConvolutionLayer *conv2 = network->addConvolutionNd(*p3->getOutput(0), 256, DimsHW{1, 4},
weightMap["backbone.16.weight"],
weightMap["backbone.16.bias"]);
ILayer *tmp5 = addBatchNorm2d(network, weightMap, *conv2->getOutput(0), "backbone.17", 1e-5);
auto relu5 = network->addActivation(*tmp5->getOutput(0), ActivationType::kRELU);
IConvolutionLayer *conv3 = network->addConvolutionNd(*relu5->getOutput(0), 68, DimsHW{13, 1},
weightMap["backbone.20.weight"],
weightMap["backbone.20.bias"]);
ILayer *tmp6 = addBatchNorm2d(network, weightMap, *conv3->getOutput(0), "backbone.21", 1e-5);
auto backbone = network->addActivation(*tmp6->getOutput(0), ActivationType::kRELU);
float *deval = reinterpret_cast<float *>(malloc(sizeof(float) * 64 * 4 * 18));
for (int i = 0; i < 64 * 4 * 18; i++) {
deval[i] = 2.0;
}
Weights deconvwts11{DataType::kFLOAT, deval, 64 * 4 * 18};
IConstantLayer *d = network->addConstant(Dims4{1, 64, 4, 18}, deconvwts11);
IElementWiseLayer *f_pow = network->addElementWise(*f0->getOutput(0), *d->getOutput(0), ElementWiseOperation::kPOW);
Dims pf0 = f0->getOutput(0)->getDimensions();
Dims pD = d->getOutput(0)->getDimensions();
Dims pf_pow = f_pow->getOutput(0)->getDimensions();
auto f_mean = network->addReduce(*f_pow->getOutput(0), ReduceOperation::kAVG, 0XF, true);
Dims pf_mean = f_mean->getOutput(0)->getDimensions();
IElementWiseLayer *f_div = network->addElementWise(*f0->getOutput(0), *f_mean->getOutput(0),
ElementWiseOperation::kDIV);
Dims pf_div = f_div->getOutput(0)->getDimensions();
float *deval2 = reinterpret_cast<float *>(malloc(sizeof(float) * 1 * 128 * 4 * 18));
for (int i = 0; i < 128 * 4 * 18 * 1; i++) {
deval2[i] = 2.0;
}
Weights deconvwts22{DataType::kFLOAT, deval2, 128 * 4 * 18 * 1};
IConstantLayer *d2 = network->addConstant(Dims4{1, 128, 4, 18}, deconvwts22);
IElementWiseLayer *f_pow2 = network->addElementWise(*f1->getOutput(0), *d2->getOutput(0),
ElementWiseOperation::kPOW);
auto f_mean2 = network->addReduce(*f_pow2->getOutput(0), ReduceOperation::kAVG, 0XF, true);
IElementWiseLayer *f_div2 = network->addElementWise(*f1->getOutput(0), *f_mean2->getOutput(0),
ElementWiseOperation::kDIV);
float *deval3 = reinterpret_cast<float *>(malloc(sizeof(float) * 256 * 4 * 18 * 1));
for (int i = 0; i < 256 * 4 * 18 * 1; i++) {
deval3[i] = 2.0;
}
Weights deconvwts33{DataType::kFLOAT, deval3, 256 * 4 * 18 * 1};
IConstantLayer *d3 = network->addConstant(Dims4{1, 256, 4, 18}, deconvwts33);
IElementWiseLayer *f_pow3 = network->addElementWise(*f2->getOutput(0), *d3->getOutput(0),
ElementWiseOperation::kPOW);
auto f_mean3 = network->addReduce(*f_pow3->getOutput(0), ReduceOperation::kAVG, 0XF, true);
IElementWiseLayer *f_div3 = network->addElementWise(*f2->getOutput(0), *f_mean3->getOutput(0),
ElementWiseOperation::kDIV);
float *deval4 = reinterpret_cast<float *>(malloc(sizeof(float) * 68 * 4 * 18 * 1));
for (int i = 0; i < 68 * 4 * 18 * 1; i++) {
deval4[i] = 2.0;
}
Weights deconvwts44{DataType::kFLOAT, deval4, 68 * 4 * 18 * 1};
IConstantLayer *d4 = network->addConstant(Dims4{1, 68, 4, 18}, deconvwts44);
IElementWiseLayer *f_pow4 = network->addElementWise(*backbone->getOutput(0), *d4->getOutput(0),
ElementWiseOperation::kPOW);
auto f_mean4 = network->addReduce(*f_pow4->getOutput(0), ReduceOperation::kAVG, 0XF, true);
IElementWiseLayer *f_div4 = network->addElementWise(*backbone->getOutput(0), *f_mean4->getOutput(0),
ElementWiseOperation::kDIV);
ITensor *inputTensors[] = {f_div->getOutput(0), f_div2->getOutput(0), f_div3->getOutput(0), f_div4->getOutput(0)};
auto f_divdims = f_div->getOutput(0)->getDimensions();
auto f_div2dims = f_div2->getOutput(0)->getDimensions();
auto f_div3dims = f_div3->getOutput(0)->getDimensions();
auto backbonedims = backbone->getOutput(0)->getDimensions();
auto cat = network->addConcatenation(inputTensors, 4);
Dims pcat = cat->getOutput(0)->getDimensions();
IConvolutionLayer *container = network->addConvolutionNd(*cat->getOutput(0), 68, DimsHW{1, 1},
weightMap["container.0.weight"],
weightMap["container.0.bias"]);
auto logits = network->addReduce(*container->getOutput(0), ReduceOperation::kAVG, 0X04, false);
Dims dims = logits->getOutput(0)->getDimensions();
std::cout << "logits shape " << dims.d[0] << " " << dims.d[1] << " " << dims.d[2] << std::endl;
logits->getOutput(0)->setName(OUTPUT_BLOB_NAME);
network->markOutput(*logits->getOutput(0));
// Build engine
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB
#ifdef USE_FP16
config->setFlag(BuilderFlag::kFP16);
#endif
std::cout << "Building engine, please wait for a while..." << std::endl;
ICudaEngine *engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto &mem : weightMap) {
free((void *) (mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory **modelStream) {
// Create builder
IBuilder *builder = createInferBuilder(gLogger);
IBuilderConfig *config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine *engine = createEngine(maxBatchSize, builder, config, DataType::kFLOAT);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
}
void doInference(IExecutionContext &context, float *input, float *output, int batchSize) {
const ICudaEngine &engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
assert(engine.getNbBindings() == 2);
void *buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
// Create GPU buffers on device
CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float)));
CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
// Create stream
cudaStream_t stream;
CHECK(cudaStreamCreate(&stream));
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float),
cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost,
stream));
cudaStreamSynchronize(stream);
// Release stream and buffers
cudaStreamDestroy(stream);
CHECK(cudaFree(buffers[inputIndex]));
CHECK(cudaFree(buffers[outputIndex]));
}
int main(int argc, char **argv) {
cudaSetDevice(DEVICE);
// create a model using the API directly and serialize it to a stream
char *trtModelStream{nullptr};
size_t size{0};
if (argc == 2 && std::string(argv[1]) == "-s") {
IHostMemory *modelStream{nullptr};
APIToModel(BATCH_SIZE, &modelStream);
assert(modelStream != nullptr);
std::ofstream p("LPRnet.engine", std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char *>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 0;
} else if (argc == 2 && std::string(argv[1]) == "-d") {
std::ifstream file("LPRnet.engine", std::ios::binary);
if (file.good()) {
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
} else {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./LPRnet -s // serialize model to plan file" << std::endl;
std::cerr << "./LPRnet -d ../samples // deserialize plan file and run inference" << std::endl;
return -1;
}
// prepare input data ---------------------------
static float data[BATCH_SIZE * 3 * INPUT_H * INPUT_W];
cv::Mat img = cv::imread("../1.jpg");
cv::Mat pr_img;
cv::resize(img, pr_img, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_CUBIC);
// For multi-batch, I feed the same image multiple times.
// If you want to process different images in a batch, you need adapt it.
//cv::Mat blob = cv::dnn::blobFromImage(pr_img, 0.0078125, pr_img.size(), cv::Scalar(127.5, 127.5, 127.5), true,
//false);
int i = 0;
for (int row = 0; row < INPUT_H; ++row) {
uchar* uc_pixel = pr_img.data + row * pr_img.step;
for (int col = 0; col < INPUT_W; ++col) {
data[i + 2 * INPUT_H * INPUT_W] = ((float)uc_pixel[2] - 127.5)*0.0078125;
data[i + INPUT_H * INPUT_W] = ((float)uc_pixel[1]-127.5)*0.0078125;
data[i] = ((float)uc_pixel[0]-127.5)*0.0078125;
uc_pixel += 3;
++i;
}
}
IRuntime *runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine *engine = runtime->deserializeCudaEngine(trtModelStream, size);
//ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
assert(engine != nullptr);
IExecutionContext *context = engine->createExecutionContext();
assert(context != nullptr);
// Run inference
static float prob[BATCH_SIZE * OUTPUT_SIZE];
auto start = std::chrono::system_clock::now();
doInference(*context, data, prob, BATCH_SIZE);
auto end = std::chrono::system_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << "us" << std::endl;
std::vector<int> preds;
std::cout << std::endl;
for (int i = 0; i < 18; i++) {
int maxj = 0;
for (int j = 0; j < 68; j++) {
if (prob[i + 18 * j] > prob[i + 18 * maxj]) maxj = j;
}
preds.push_back(maxj);
}
int pre_c = preds[0];
std::vector<int> no_repeat_blank_label;
for (auto c: preds) {
if (c == pre_c || c == 68 - 1) {
if (c == 68 - 1) pre_c = c;
continue;
}
no_repeat_blank_label.push_back(c);
pre_c = c;
}
std::string str;
for (auto v: no_repeat_blank_label) {
str += alphabet[v];
}
std::cout<<"result:"<<str<<std::endl;
// Destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
return 0;
}