-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathpair-data-augment-contrastive-learning.py
264 lines (209 loc) · 8.39 KB
/
pair-data-augment-contrastive-learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding: utf-8 -*-
# @Date : 2020/12/4
# @Author : mingming.xu
# @Email : xv44586@gmail.com
# @File : pair-data-augment-constrastive-learning.py
"""
借鉴无监督中借助数据增强来做对比学习,采用query-reply 对为基本样本形式,通过互换query/reply 的位置构造新样本,做对比学习
线下结果:提升不明显
"""
import os
import numpy as np
from tqdm import tqdm
from toolkit4nlp.utils import *
from toolkit4nlp.models import *
from toolkit4nlp.tokenizers import *
from toolkit4nlp.backend import *
from toolkit4nlp.layers import *
from toolkit4nlp.optimizers import *
path = '/home/mingming.xu/datasets/NLP/ccf_qa_match/'
maxlen = 128
batch_size = 32
epochs = 10
config_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/bert_config.json'
checkpoint_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/model.ckpt'
dict_path = '/home/mingming.xu/pretrain/NLP/nezha_base_wwm/vocab.txt'
# 建立分词器
token_dict, keep_tokens = load_vocab(dict_path,
simplified=True,
startswith=['[PAD]', '[UNK]', '[MASK]', '[CLS]', '[SEP]'])
tokenizer = Tokenizer(token_dict, do_lower_case=True)
def load_data(train_test='train'):
D = {}
with open(os.path.join(path, train_test, train_test + '.query.tsv')) as f:
for l in f:
span = l.strip().split('\t')
D[span[0]] = {'query': span[1], 'reply': []}
with open(os.path.join(path, train_test, train_test + '.reply.tsv')) as f:
for l in f:
span = l.strip().split('\t')
if len(span) == 4:
q_id, r_id, r, label = span
else:
label = None
q_id, r_id, r = span
D[q_id]['reply'].append([r_id, r, label])
d = []
for k, v in D.items():
q_id = k
q = v['query']
reply = v['reply']
for r in reply:
r_id, rc, label = r
d.append([q_id, q, r_id, rc, label])
return d
train_data = load_data('train')
test_data = load_data('test')
def can_padding(token_id):
if token_id in (tokenizer._token_mask_id, tokenizer._token_end_id, tokenizer._token_start_id):
return False
return True
class data_generator(DataGenerator):
def random_padding(self, token_ids):
rands = np.random.random(len(token_ids))
new_tokens = []
for p, token in zip(rands, token_ids):
if p < 0.1 and can_padding(token):
new_tokens.append(tokenizer._token_pad_id)
else:
new_tokens.append(token)
return new_tokens
def __iter__(self, shuffle=False):
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
for is_end, (q_id, q, r_id, r, label) in self.get_sample(shuffle):
label = float(label) if label is not None else None
if shuffle:
token_ids_1, segment_ids_1 = tokenizer.encode(q, r, maxlen=maxlen)
token_ids_1 = self.random_padding(token_ids_1)
token_ids_2, segment_ids_2 = tokenizer.encode(r, q, maxlen=maxlen)
token_ids_2 = self.random_padding(token_ids_2)
batch_token_ids.extend([token_ids_1, token_ids_2])
batch_segment_ids.extend([segment_ids_1, segment_ids_2])
batch_labels.extend([[label], [label]])
else:
token_ids, segment_ids = tokenizer.encode(q, r, maxlen=maxlen)
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_labels.append([label])
if is_end or len(batch_token_ids) == self.batch_size * 2:
batch_token_ids = pad_sequences(batch_token_ids)
batch_segment_ids = pad_sequences(batch_segment_ids)
batch_labels = pad_sequences(batch_labels)
yield [batch_token_ids, batch_segment_ids], batch_labels
batch_token_ids, batch_segment_ids, batch_labels = [], [], []
# shuffle
np.random.shuffle(train_data)
n = int(len(train_data) * 0.8)
valid_data, train_data = train_data[n:], train_data[:n]
train_generator = data_generator(data=train_data, batch_size=batch_size)
valid_generator = data_generator(data=valid_data, batch_size=batch_size)
test_generator = data_generator(data=test_data, batch_size=batch_size)
print(len(train_data), len(valid_data))
class ContrastiveLoss(Loss):
"""loss: 相似度的交叉熵。
"""
def __init__(self, alpha=1., T=1., **kwargs):
super(ContrastiveLoss, self).__init__(**kwargs)
self.alpha = alpha # 权重weight
self.T = T # 平滑温度
def compute_loss(self, inputs, mask=None):
loss = self.compute_loss_of_similarity(inputs, mask)
loss = loss * self.alpha
self.add_metric(loss, name='similarity_loss')
return loss
def compute_loss_of_similarity(self, inputs, mask=None):
y_pred = inputs
y_true = self.get_labels_of_similarity(y_pred) # 构建标签
y_pred = K.l2_normalize(y_pred, axis=1) # 句向量归一化
similarities = K.dot(y_pred, K.transpose(y_pred)) # 相似度矩阵
similarities = similarities - K.eye(K.shape(y_pred)[0]) * 1e12 # 排除对角线
similarities = similarities / self.T # scale
loss = K.categorical_crossentropy(
y_true, similarities, from_logits=True
)
return loss
def get_labels_of_similarity(self, y_pred):
idxs = K.arange(0, K.shape(y_pred)[0])
idxs_1 = idxs[None, :]
idxs_2 = (idxs + 1 - idxs % 2 * 2)[:, None]
labels = K.equal(idxs_1, idxs_2)
labels = K.cast(labels, K.floatx())
return labels
# 加载预训练模型
bert = build_transformer_model(
config_path=config_path,
checkpoint_path=checkpoint_path,
model='nezha',
keep_tokens=keep_tokens,
num_hidden_layers=10, #
)
output = Lambda(lambda x: x[:, 0])(bert.output)
cons_output = ContrastiveLoss(alpha=1, T=0.1)(output)
output = Dropout(0.1)(output)
output = Dense(2)(output)
clf_output = Activation('softmax', name='clf')(output)
model = keras.models.Model(bert.input, clf_output)
model.summary()
train_model = keras.models.Model(bert.input, [cons_output, clf_output])
optimizer = extend_with_weight_decay(Adam)
optimizer = extend_with_piecewise_linear_lr(optimizer)
opt = optimizer(learning_rate=1e-5, weight_decay_rate=0.1, exclude_from_weight_decay=['Norm', 'bias'],
lr_schedule={int(len(train_generator) * 0.1 * epochs): 1, len(train_generator) * epochs: 0}
)
train_model.compile(
loss=[None, 'sparse_categorical_crossentropy'],
optimizer=opt,
)
def evaluate(data):
P, R, TP = 0., 0., 0.
for x_true, y_true in tqdm(data):
y_pred = model.predict(x_true).argmax(axis=1)
# y_pred = np.round(y_pred)
y_true = y_true[:, 0]
R += y_pred.sum()
P += y_true.sum()
TP += ((y_pred + y_true) > 1).sum()
print(P, R, TP)
pre = TP / R
rec = TP / P
return 2 * (pre * rec) / (pre + rec)
class Evaluator(keras.callbacks.Callback):
"""评估与保存
"""
def __init__(self, save_path):
self.best_val_f1 = 0.
self.save_path = save_path
def on_epoch_end(self, epoch, logs=None):
val_f1 = evaluate(valid_generator)
if val_f1 > self.best_val_f1:
self.best_val_f1 = val_f1
model.save_weights(self.save_path)
print(
u'val_f1: %.5f, best_val_f1: %.5f\n' %
(val_f1, self.best_val_f1)
)
def predict_to_file(path='pair_submission.tsv', data=test_generator):
preds = []
for x, _ in tqdm(test_generator):
pred = model.predict(x)[:, 0]
pred = np.round(pred)
pred = pred.astype(int)
preds.extend(pred)
ret = []
for d, p in zip(test_data, preds):
q_id, _, r_id, _, _ = d
ret.append([str(q_id), str(r_id), str(p)])
with open(path, 'w', encoding='utf8') as f:
for l in ret:
f.write('\t'.join(l) + '\n')
if __name__ == '__main__':
save_path = 'best_parimatch_ag_cl_model.weights'
evaluator = Evaluator(save_path)
train_model.fit_generator(
train_generator.generator(),
steps_per_epoch=len(train_generator),
epochs=epochs,
callbacks=[evaluator],
)
model.load_weights(save_path)
predict_to_file('pair_ag_cl_submission.tsv')