-
Notifications
You must be signed in to change notification settings - Fork 3
/
IRNN_Backward_cuda.cu
140 lines (107 loc) · 4.97 KB
/
IRNN_Backward_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#define CUDA_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
i < (n); \
i += blockDim.x * gridDim.x)
#define INDEX(b,c,h,w,channels,height,width) ((b * channels + c) * height + h) * width+ w
extern "C" __global__ void IRNNBackward(
float* grad_input,
float* grad_weight_up_map,
float* grad_weight_right_map,
float* grad_weight_down_map,
float* grad_weight_left_map,
float* grad_bias_up_map,
float* grad_bias_right_map,
float* grad_bias_down_map,
float* grad_bias_left_map,
const float* weight_up,
const float* weight_right,
const float* weight_down,
const float* weight_left,
const float* grad_output_up,
const float* grad_output_right,
const float* grad_output_down,
const float* grad_output_left,
const float* output_up,
const float* output_right,
const float* output_down,
const float* output_left,
const int channels,
const int height,
const int width,
const int n) {
CUDA_KERNEL_LOOP(index,n){
int w = index % width;
int h = index / width % height;
int c = index / width / height % channels;
int b = index / width / height / channels;
float diff_left = 0;
float diff_right = 0;
float diff_up = 0;
float diff_down = 0;
//left
for (int i = 0; i<=w; i++)
{
diff_left *= weight_left[c];
diff_left += grad_output_left[INDEX(b, c, h, i, channels, height, width)];
diff_left *= (output_left[INDEX(b, c, h, i, channels, height, width)]<=0)? 0 : 1;
}
float temp = grad_output_left[INDEX(b, c, h, 0, channels, height, width)];
for (int i = 1; i < w +1 ; i++)
{
temp = (output_left[INDEX(b, c, h, i-1, channels, height, width)] >0?1:0) * temp * weight_left[c] + grad_output_left[INDEX(b, c, h, i, channels, height, width)];
}
if (w != width - 1){
grad_weight_left_map[index] = temp * output_left[INDEX(b, c, h, w+1, channels, height, width)] * (output_left[index] > 0? 1:0);
grad_bias_left_map[index] = diff_left;
}
// right
for (int i = width -1; i>=w; i--)
{
diff_right *= weight_right[c];
diff_right += grad_output_right[INDEX(b, c, h, i, channels, height, width)];
diff_right *= (output_right[INDEX(b, c, h, i, channels, height, width)]<=0)? 0 : 1;
}
temp = grad_output_right[INDEX(b, c, h, width-1, channels, height, width)];
for (int i = width -2; i > w - 1 ; i--)
{
temp = (output_right[INDEX(b, c, h, i+1, channels, height, width)] >0?1:0) * temp * weight_right[c] + grad_output_right[INDEX(b, c, h, i, channels, height, width)];
}
if (w != 0){
grad_weight_right_map[index] = temp * output_right[INDEX(b, c, h, w-1, channels, height, width)] * (output_right[index] > 0? 1:0);
grad_bias_right_map[index] = diff_right;
}
// up
for (int i = 0; i<=h; i++)
{
diff_up *= weight_up[c];
diff_up += grad_output_up[INDEX(b, c, i, w, channels, height, width)];
diff_up *= (output_up[INDEX(b, c, i, w, channels, height, width)]<=0)? 0 : 1;
}
temp = grad_output_up[INDEX(b, c, 0, w, channels, height, width)];
for (int i = 1; i < h +1 ; i++)
{
temp = (output_up[INDEX(b, c, i-1, w, channels, height, width)] >0?1:0) * temp * weight_up[c] + grad_output_up[INDEX(b, c, i, w, channels, height, width)];
}
if (h != height - 1){
grad_weight_up_map[index] = temp * output_up[INDEX(b, c, h+1, w, channels, height, width)] * (output_up[index] > 0? 1:0);
grad_bias_up_map[index] = diff_up;
}
// down
for (int i = height -1; i>=h; i--)
{
diff_down *= weight_down[c];
diff_down += grad_output_down[INDEX(b, c, i, w, channels, height, width)];
diff_down *= (output_down[INDEX(b, c, i, w, channels, height, width)]<=0)? 0 : 1;
}
temp = grad_output_down[INDEX(b, c, height-1, w, channels, height, width)];
for (int i = height -2; i > h - 1 ; i--)
{
temp = (output_down[INDEX(b, c, i+1, w, channels, height, width)] >0?1:0) * temp * weight_down[c] + grad_output_down[INDEX(b, c, i, w, channels, height, width)];
}
if (h != 0){
grad_weight_down_map[index] = temp * output_down[INDEX(b, c, h-1, w, channels, height, width)] * (output_down[index] > 0? 1:0);
grad_bias_down_map[index] = diff_down;
}
grad_input[index] = diff_down + diff_left + diff_right + diff_up;
}
}