forked from liux0614/yolo_nano
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
75 lines (63 loc) · 3.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
from terminaltables import AsciiTable
from utils.stats import non_max_suppression
def train(model, optimizer, dataloader, epoch, opt, logger, visualizer=None):
for i, (images, targets) in enumerate(dataloader):
# targets: [idx, class_id, x, y, h, w] in yolo format
# idx is used to associate the bounding boxes with its image
# skip images without bounding boxes (mainly because coco has unlabelled images)
if targets.size(0) == 0:
continue
batches_done = len(dataloader) * epoch + i
if not opt.no_cuda:
model = model.to(opt.device)
images = Variable(images.to(opt.device))
if targets is not None:
targets = Variable(targets.to(opt.device), requires_grad=False)
loss, detections = model.forward(images, targets)
detections = non_max_suppression(detections.cpu(), opt.conf_thres, opt.nms_thres)
loss.backward()
if batches_done % opt.gradient_accumulations == 0 or i == len(dataloader)-1:
optimizer.step()
optimizer.zero_grad()
# logging
metric_keys = model.yolo_layer52.metrics.keys()
yolo_metrics = [model.yolo_layer52.metrics, model.yolo_layer26.metrics, model.yolo_layer13.metrics]
metric_table_data = [['Metrics', 'YOLO Layer 0', 'YOLO Layer 1', 'YOLO Layer 2']]
formats = {m: '%.6f' for m in metric_keys}
for metric in metric_keys:
row_metrics = [formats[metric] % ym.get(metric, 0) for ym in yolo_metrics]
metric_table_data += [[metric, *row_metrics]]
metric_table_data += [['total loss', '{:.6f}'.format(loss.item()), '', '']]
# beautify log message
metric_table = AsciiTable(
metric_table_data,
title='[Epoch {:d}/{:d}, Batch {:d}/{:d}]'.format(epoch, opt.num_epochs, i, len(dataloader)))
metric_table.inner_footing_row_border = True
logger.print_and_write('{}\n\n\n'.format(metric_table.table))
if visualizer is not None and not opt.no_vis_preds:
visualizer.plot_predictions(images.cpu(), detections, env='main') # plot prediction
if visualizer is not None and not opt.no_vis_gt:
visualizer.plot_ground_truth(images.cpu(), targets.cpu(), env='main') # plot ground truth
metrics_to_vis = []
# uncomment code below to plot the metrics of each YOLO layer
# for j, ym in enumerate(yolo_metrics):
# for key, metric in ym.items():
# if key != 'grid_size':
# metrics_to_vis += [('{}_yolo_layer_{}'.format(key, j), metric)]
metrics_to_vis += [('total_loss', loss.item())]
if visualizer is not None:
visualizer.plot_metrics(metrics_to_vis, batches_done, env='main')
# save checkpoints
if epoch % opt.checkpoint_interval == 0:
save_file_path = os.path.join(opt.checkpoint_path, 'epoch_{}.pth'.format(epoch))
states = {
'epoch': epoch + 1,
'model': opt.model,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
torch.save(states, save_file_path)