-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdna_io.py
477 lines (403 loc) · 12.5 KB
/
dna_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#!/usr/bin/env python
import sys
from collections import OrderedDict
import numpy as np
import numpy.random as npr
from sklearn import preprocessing
################################################################################
# dna_io.py
#
# Methods to load the training data.
################################################################################
################################################################################
# align_seqs_scores
#
# Align entries from input dicts into numpy matrices ready for analysis.
#
# Input
# seq_vecs: Dict mapping headers to sequence vectors.
# seq_scores: Dict mapping headers to score vectors.
#
# Output
# train_seqs: Matrix with sequence vector rows.
# train_scores: Matrix with score vector rows.
################################################################################
def align_seqs_scores_1hot(seq_vecs, seq_scores, sort=True):
if sort:
seq_headers = sorted(seq_vecs.keys())
else:
seq_headers = seq_vecs.keys()
# construct lists of vectors
train_scores = []
train_seqs = []
for header in seq_headers:
train_seqs.append(seq_vecs[header])
train_scores.append(seq_scores[header])
# stack into matrices
train_seqs = np.vstack(train_seqs)
train_scores = np.vstack(train_scores)
return train_seqs, train_scores
################################################################################
# check_order
#
# Check that the order of sequences in a matrix of vectors matches the order
# in the given fasta file
################################################################################
def check_order(seq_vecs, fasta_file):
# reshape into seq x 4 x len
seq_mats = np.reshape(seq_vecs, (seq_vecs.shape[0], 4, seq_vecs.shape[1]/4))
# generate sequences
real_seqs = []
for i in range(seq_mats.shape[0]):
seq_list = ['']*seq_mats.shape[2]
for j in range(seq_mats.shape[2]):
if seq_mats[i,0,j] == 1:
seq_list[j] = 'A'
elif seq_mats[i,1,j] == 1:
seq_list[j] = 'C'
elif seq_mats[i,2,j] == 1:
seq_list[j] = 'G'
elif seq_mats[i,3,j] == 1:
seq_list[j] = 'T'
else:
seq_list[j] = 'N'
real_seqs.append(''.join(seq_list))
# load FASTA sequences
fasta_seqs = []
for line in open(fasta_file):
if line[0] == '>':
fasta_seqs.append('')
else:
fasta_seqs[-1] += line.rstrip()
# check
assert(len(real_seqs) == len(fasta_seqs))
for i in range(len(fasta_seqs)):
try:
assert(fasta_seqs[i] == real_seqs[i])
except:
print fasta_seqs[i]
print real_seqs[i]
exit()
################################################################################
# dna_one_hot
#
# Input
# seq:
#
# Output
# seq_vec: Flattened column vector
################################################################################
'''
def dna_one_hot(seq, seq_len=None):
if seq_len == None:
seq_len = len(seq)
seq = seq.replace('A','0')
seq = seq.replace('C','1')
seq = seq.replace('G','2')
seq = seq.replace('T','3')
# map nt's to a matrix 4 x len(seq) of 0's and 1's.
seq_code = np.zeros((4,seq_len), dtype='int8')
for i in range(seq_len):
try:
seq_code[int(seq[i]),i] = 1
except:
# print >> sys.stderr, 'Non-ACGT nucleotide encountered'
seq_code[:,i] = 0.25
# flatten and make a column vector 1 x len(seq)
seq_vec = seq_code.flatten()[None,:]
return seq_vec
'''
def dna_one_hot(seq, seq_len=None, flatten=True):
if seq_len == None:
seq_len = len(seq)
seq_start = 0
else:
if seq_len <= len(seq):
# trim the sequence
seq_trim = (len(seq)-seq_len)/2
seq = seq[seq_trim:seq_trim+seq_len]
seq_start = 0
else:
seq_start = (seq_len-len(seq))/2
seq = seq.upper()
seq = seq.replace('A','0')
seq = seq.replace('C','1')
seq = seq.replace('G','2')
seq = seq.replace('T','3')
# map nt's to a matrix 4 x len(seq) of 0's and 1's.
# dtype='int8' fails for N's
seq_code = np.zeros((4,seq_len), dtype='float16')
for i in range(seq_len):
if i < seq_start:
seq_code[:,i] = 0.25
else:
try:
seq_code[int(seq[i-seq_start]),i] = 1
except:
seq_code[:,i] = 0.25
# flatten and make a column vector 1 x len(seq)
if flatten:
seq_vec = seq_code.flatten()[None,:]
return seq_vec
################################################################################
# fasta2dict
#
# Read a multifasta file into a dict. Taking the whole line as the key.
#
# I've found this can be quite slow for some reason, even for a single fasta
# entry.
################################################################################
def fasta2dict(fasta_file):
fasta_dict = OrderedDict()
header = ''
for line in open(fasta_file):
if line[0] == '>':
#header = line.split()[0][1:]
header = line[1:].rstrip()
fasta_dict[header] = ''
else:
fasta_dict[header] += line.rstrip()
return fasta_dict
################################################################################
# hash_scores
#
# Input
# scores_file:
#
# Output
# seq_scores: Dict mapping FASTA headers to score vectors.
################################################################################
def hash_scores(scores_file):
seq_scores = {}
for line in open(scores_file):
a = line.split()
try:
seq_scores[a[0]] = np.array([float(a[i]) for i in range(1,len(a))])
except:
print >> sys.stderr, 'Ignoring header line'
# consider converting the scores to integers
int_scores = True
for header in seq_scores:
if not np.equal(np.mod(seq_scores[header], 1), 0).all():
int_scores = False
break
if int_scores:
for header in seq_scores:
seq_scores[header] = seq_scores[header].astype('int8')
'''
for header in seq_scores:
if seq_scores[header] > 0:
seq_scores[header] = np.array([0, 1], dtype=np.min_scalar_type(1))
else:
seq_scores[header] = np.array([1, 0], dtype=np.min_scalar_type(1))
'''
return seq_scores
################################################################################
# hash_sequences_1hot
#
# Input
# fasta_file: Input FASTA file.
# extend_len: Extend the sequences to this length.
#
# Output
# seq_vecs: Dict mapping FASTA headers to sequence representation vectors.
################################################################################
def hash_sequences_1hot(fasta_file, extend_len=None):
# determine longest sequence
if extend_len is not None:
seq_len = extend_len
else:
seq_len = 0
seq = ''
for line in open(fasta_file):
if line[0] == '>':
if seq:
seq_len = max(seq_len, len(seq))
header = line[1:].rstrip()
seq = ''
else:
seq += line.rstrip()
if seq:
seq_len = max(seq_len, len(seq))
# load and code sequences
seq_vecs = OrderedDict()
seq = ''
for line in open(fasta_file):
if line[0] == '>':
if seq:
seq_vecs[header] = dna_one_hot(seq, seq_len)
header = line[1:].rstrip()
seq = ''
else:
seq += line.rstrip()
if seq:
seq_vecs[header] = dna_one_hot(seq, seq_len)
return seq_vecs
################################################################################
# load_data_1hot
#
# Input
# fasta_file: Input FASTA file.
# scores_file: Input scores file.
#
# Output
# train_seqs: Matrix with sequence vector rows.
# train_scores: Matrix with score vector rows.
################################################################################
def load_data_1hot(fasta_file, scores_file, extend_len=None, mean_norm=True, whiten=False, permute=True, sort=False):
# load sequences
seq_vecs = hash_sequences_1hot(fasta_file, extend_len)
# load scores
seq_scores = hash_scores(scores_file)
# align and construct input matrix
train_seqs, train_scores = align_seqs_scores_1hot(seq_vecs, seq_scores, sort)
# whiten scores
if whiten:
train_scores = preprocessing.scale(train_scores)
elif mean_norm:
train_scores -= np.mean(train_scores, axis=0)
# randomly permute
if permute:
order = npr.permutation(train_seqs.shape[0])
train_seqs = train_seqs[order]
train_scores = train_scores[order]
return train_seqs, train_scores
################################################################################
# load_sequences
#
# Input
# fasta_file: Input FASTA file.
#
# Output
# train_seqs: Matrix with sequence vector rows.
# train_scores: Matrix with score vector rows.
################################################################################
def load_sequences(fasta_file, permute=False):
# load sequences
seq_vecs = hash_sequences_1hot(fasta_file)
# stack
train_seqs = np.vstack(seq_vecs.values())
# randomly permute the data
if permute:
order = npr.permutation(train_seqs.shape[0])
train_seqs = train_seqs[order]
return train_seqs
################################################################################
# one_hot_get
#
# Input
# seq_vec:
# pos:
#
# Output
# nt
################################################################################
def one_hot_get(seq_vec, pos):
seq_len = len(seq_vec)/4
a0 = 0
c0 = seq_len
g0 = 2*seq_len
t0 = 3*seq_len
if seq_vec[a0+pos] == 1:
nt = 'A'
elif seq_vec[c0+pos] == 1:
nt = 'C'
elif seq_vec[g0+pos] == 1:
nt = 'G'
elif seq_vec[t0+pos] == 1:
nt = 'T'
else:
nt = 'N'
return nt
################################################################################
# one_hot_set
#
# Assuming the sequence is given as 4x1xLENGTH
# Input
# seq_vec:
# pos:
# nt
#
# Output
################################################################################
def one_hot_set(seq_vec, pos, nt):
# zero all
for ni in range(4):
seq_vec[ni,0,pos] = 0
# set the nt
if nt == 'A':
seq_vec[0,0,pos] = 1
elif nt == 'C':
seq_vec[1,0,pos] = 1
elif nt == 'G':
seq_vec[2,0,pos] = 1
elif nt == 'T':
seq_vec[3,0,pos] = 1
else:
for ni in range(4):
seq_vec[ni,0,pos] = 0.25
################################################################################
# one_hot_set_1d
#
# Input
# seq_vec:
# pos:
# nt
#
# Output
################################################################################
def one_hot_set_1d(seq_vec, pos, nt):
seq_len = len(seq_vec)/4
a0 = 0
c0 = seq_len
g0 = 2*seq_len
t0 = 3*seq_len
# zero all
seq_vec[a0+pos] = 0
seq_vec[c0+pos] = 0
seq_vec[g0+pos] = 0
seq_vec[t0+pos] = 0
# set the nt
if nt == 'A':
seq_vec[a0+pos] = 1
elif nt == 'C':
seq_vec[c0+pos] = 1
elif nt == 'G':
seq_vec[g0+pos] = 1
elif nt == 'T':
seq_vec[t0+pos] = 1
else:
seq_vec[a0+pos] = 0.25
seq_vec[c0+pos] = 0.25
seq_vec[g0+pos] = 0.25
seq_vec[t0+pos] = 0.25
def vecs2dna(seq_vecs):
''' vecs2dna
Input:
seq_vecs:
Output:
seqs
'''
# possibly reshape
if len(seq_vecs.shape) == 2:
seq_vecs = np.reshape(seq_vecs, (seq_vecs.shape[0], 4, -1))
elif len(seq_vecs.shape) == 4:
seq_vecs = np.reshape(seq_vecs, (seq_vecs.shape[0], 4, -1))
seqs = []
for i in range(seq_vecs.shape[0]):
seq_list = ['']*seq_vecs.shape[2]
for j in range(seq_vecs.shape[2]):
if seq_vecs[i,0,j] == 1:
seq_list[j] = 'A'
elif seq_vecs[i,1,j] == 1:
seq_list[j] = 'C'
elif seq_vecs[i,2,j] == 1:
seq_list[j] = 'G'
elif seq_vecs[i,3,j] == 1:
seq_list[j] = 'T'
elif seq_vecs[i,:,j].sum() == 1:
seq_list[j] = 'N'
else:
print >> sys.stderr, 'Malformed position vector: ', seq_vecs[i,:,j], 'for sequence %d position %d' % (i,j)
seqs.append(''.join(seq_list))
return seqs