-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
102 lines (82 loc) · 3.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn.functional as F
import numpy as np
from robot_model.KinematicModel import KinematicModel
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from mpl_toolkits.mplot3d import Axes3D
import random
from pathlib import Path
def main():
files = [np.loadtxt('target/2dim_log_spiral_{}.txt'.format(i+1), delimiter = ' ', skiprows = 1, dtype = 'float') for i in range(1000)]
target_data = np.array(files)
nEval = 2
nBatch = 700
nTrain = 400
nJoint = 5
train_idx = random.sample(range(1000), nTrain)
eval_idx = list(range(1000))
km = KinematicModel(nJoint = 5)
# folding
for i in train_idx:
eval_idx.remove(i)
# Select specific trajectory
# test1 = eval_idx.index(944)
# test2 = eval_idx.index(920)
control = target_data[train_idx,:,3:5].reshape(-1,2)
target_position = target_data[train_idx,:,0:3].reshape(-1,3)
params = list(km.model.parameters())+list([km.kt.rpy])+list([km.kt.b])
optimizer = torch.optim.Adam(params, weight_decay=0.01)
pathname = './data/1'
Path(pathname).mkdir(parents=True, exist_ok=True)
for epoch in range(100000000):
randidx = random.sample(range(len(control)),nBatch)
train_control = torch.Tensor(control[randidx])
train_position = torch.Tensor(target_position[randidx])
traj, pjoints = km.predict(train_control)
loss = F.mse_loss(traj, train_position, reduction='mean')
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print('hey', list(model.qnet.parameters())[0].grad)
# print('hey', list(model.rnet.parameters())[0].grad)
# print('hey', kt.rpy.grad)
# print('hey', kt.b.grad)
# Eval
if(epoch % 100 == 0):
randidx = random.sample(eval_idx,nEval)
for n in range(nEval):
eval_train_control = torch.Tensor(target_data[randidx[n],:,3:5].reshape(-1,2))
eval_train_position = torch.Tensor(target_data[randidx[n],:, 0:3].reshape(-1,3))
eval_traj, eval_pjoints = km.predict(eval_train_control, eval=True)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
def update(frame, data, data2, line, line2):
line.set_data(data[:2, :frame])
line.set_3d_properties(data[2, :frame])
line2.set_data(data2[frame, 0:nJoint, 0], data2[frame, 0:nJoint, 1])
line2.set_3d_properties(data2[frame, 0:nJoint, 2])
return line
data = eval_traj.detach().numpy().T
data2 = eval_pjoints.detach().numpy()
line, = ax.plot(data[0, 0:1], data[1, 0:1], data[2, 0:1], 'bo')
line2, = ax.plot(data2[0, 0:nJoint, 0], data2[0, 0:nJoint, 1], data2[0, 0:nJoint, 2], '.-')
ax.set_xlim3d([-50.0, 50.0])
ax.set_ylim3d([-50.0, 50.0])
ax.set_zlim3d([-50.0, 50.0])
plt.plot(eval_train_position[:,0], eval_train_position[:,1], eval_train_position[:,2], c='k')
ani = FuncAnimation(fig, update, fargs=[data, data2, line, line2], frames=range(299), interval=1)
# plt.plot(traj.detach().numpy()[t,0], traj.detach().numpy()[t,1], traj.detach().numpy()[t,2])
loss = F.mse_loss(eval_traj, eval_train_position)
filename = pathname + '/checkpoint_{}.pth'.format(epoch+1)
print("saving... {}".format(filename))
state = {
'state_dict1':km.model.state_dict(),
'state_dict2':km.kt.state_dict()
# 'optimizer':optimizer.state_dict(),
# 'input_dim':args.input_dim
}
torch.save(state, filename)
# plt.show()
if __name__ == '__main__':
main()